Step |
Hyp |
Ref |
Expression |
1 |
|
lineset.l |
|- .<_ = ( le ` K ) |
2 |
|
lineset.j |
|- .\/ = ( join ` K ) |
3 |
|
lineset.a |
|- A = ( Atoms ` K ) |
4 |
|
lineset.n |
|- N = ( Lines ` K ) |
5 |
|
elex |
|- ( K e. B -> K e. _V ) |
6 |
|
fveq2 |
|- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
7 |
6 3
|
eqtr4di |
|- ( k = K -> ( Atoms ` k ) = A ) |
8 |
|
fveq2 |
|- ( k = K -> ( le ` k ) = ( le ` K ) ) |
9 |
8 1
|
eqtr4di |
|- ( k = K -> ( le ` k ) = .<_ ) |
10 |
9
|
breqd |
|- ( k = K -> ( p ( le ` k ) ( q ( join ` k ) r ) <-> p .<_ ( q ( join ` k ) r ) ) ) |
11 |
|
fveq2 |
|- ( k = K -> ( join ` k ) = ( join ` K ) ) |
12 |
11 2
|
eqtr4di |
|- ( k = K -> ( join ` k ) = .\/ ) |
13 |
12
|
oveqd |
|- ( k = K -> ( q ( join ` k ) r ) = ( q .\/ r ) ) |
14 |
13
|
breq2d |
|- ( k = K -> ( p .<_ ( q ( join ` k ) r ) <-> p .<_ ( q .\/ r ) ) ) |
15 |
10 14
|
bitrd |
|- ( k = K -> ( p ( le ` k ) ( q ( join ` k ) r ) <-> p .<_ ( q .\/ r ) ) ) |
16 |
7 15
|
rabeqbidv |
|- ( k = K -> { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } = { p e. A | p .<_ ( q .\/ r ) } ) |
17 |
16
|
eqeq2d |
|- ( k = K -> ( s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } <-> s = { p e. A | p .<_ ( q .\/ r ) } ) ) |
18 |
17
|
anbi2d |
|- ( k = K -> ( ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) <-> ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
19 |
7 18
|
rexeqbidv |
|- ( k = K -> ( E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) <-> E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
20 |
7 19
|
rexeqbidv |
|- ( k = K -> ( E. q e. ( Atoms ` k ) E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) <-> E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
21 |
20
|
abbidv |
|- ( k = K -> { s | E. q e. ( Atoms ` k ) E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) } = { s | E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } ) |
22 |
|
df-lines |
|- Lines = ( k e. _V |-> { s | E. q e. ( Atoms ` k ) E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) } ) |
23 |
3
|
fvexi |
|- A e. _V |
24 |
|
df-sn |
|- { { p e. A | p .<_ ( q .\/ r ) } } = { s | s = { p e. A | p .<_ ( q .\/ r ) } } |
25 |
|
snex |
|- { { p e. A | p .<_ ( q .\/ r ) } } e. _V |
26 |
24 25
|
eqeltrri |
|- { s | s = { p e. A | p .<_ ( q .\/ r ) } } e. _V |
27 |
|
simpr |
|- ( ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) -> s = { p e. A | p .<_ ( q .\/ r ) } ) |
28 |
27
|
ss2abi |
|- { s | ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } C_ { s | s = { p e. A | p .<_ ( q .\/ r ) } } |
29 |
26 28
|
ssexi |
|- { s | ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } e. _V |
30 |
23 23 29
|
ab2rexex2 |
|- { s | E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } e. _V |
31 |
21 22 30
|
fvmpt |
|- ( K e. _V -> ( Lines ` K ) = { s | E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } ) |
32 |
4 31
|
eqtrid |
|- ( K e. _V -> N = { s | E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } ) |
33 |
5 32
|
syl |
|- ( K e. B -> N = { s | E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } ) |