| Step |
Hyp |
Ref |
Expression |
| 1 |
|
llncvrlpln2.l |
|- .<_ = ( le ` K ) |
| 2 |
|
llncvrlpln2.c |
|- C = ( |
| 3 |
|
llncvrlpln2.n |
|- N = ( LLines ` K ) |
| 4 |
|
llncvrlpln2.p |
|- P = ( LPlanes ` K ) |
| 5 |
|
simpr |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X .<_ Y ) -> X .<_ Y ) |
| 6 |
|
simpl1 |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X .<_ Y ) -> K e. HL ) |
| 7 |
|
simpl3 |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X .<_ Y ) -> Y e. P ) |
| 8 |
3 4
|
lplnnelln |
|- ( ( K e. HL /\ Y e. P ) -> -. Y e. N ) |
| 9 |
6 7 8
|
syl2anc |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X .<_ Y ) -> -. Y e. N ) |
| 10 |
|
simpl2 |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X .<_ Y ) -> X e. N ) |
| 11 |
|
eleq1 |
|- ( X = Y -> ( X e. N <-> Y e. N ) ) |
| 12 |
10 11
|
syl5ibcom |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X .<_ Y ) -> ( X = Y -> Y e. N ) ) |
| 13 |
12
|
necon3bd |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X .<_ Y ) -> ( -. Y e. N -> X =/= Y ) ) |
| 14 |
9 13
|
mpd |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X .<_ Y ) -> X =/= Y ) |
| 15 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
| 16 |
1 15
|
pltval |
|- ( ( K e. HL /\ X e. N /\ Y e. P ) -> ( X ( lt ` K ) Y <-> ( X .<_ Y /\ X =/= Y ) ) ) |
| 17 |
16
|
adantr |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X .<_ Y ) -> ( X ( lt ` K ) Y <-> ( X .<_ Y /\ X =/= Y ) ) ) |
| 18 |
5 14 17
|
mpbir2and |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X .<_ Y ) -> X ( lt ` K ) Y ) |
| 19 |
|
simpl1 |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X ( lt ` K ) Y ) -> K e. HL ) |
| 20 |
|
simpl2 |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X ( lt ` K ) Y ) -> X e. N ) |
| 21 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 22 |
21 3
|
llnbase |
|- ( X e. N -> X e. ( Base ` K ) ) |
| 23 |
20 22
|
syl |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X ( lt ` K ) Y ) -> X e. ( Base ` K ) ) |
| 24 |
|
simpl3 |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X ( lt ` K ) Y ) -> Y e. P ) |
| 25 |
21 4
|
lplnbase |
|- ( Y e. P -> Y e. ( Base ` K ) ) |
| 26 |
24 25
|
syl |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X ( lt ` K ) Y ) -> Y e. ( Base ` K ) ) |
| 27 |
|
simpr |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X ( lt ` K ) Y ) -> X ( lt ` K ) Y ) |
| 28 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 29 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 30 |
21 1 15 28 2 29
|
hlrelat3 |
|- ( ( ( K e. HL /\ X e. ( Base ` K ) /\ Y e. ( Base ` K ) ) /\ X ( lt ` K ) Y ) -> E. r e. ( Atoms ` K ) ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) |
| 31 |
19 23 26 27 30
|
syl31anc |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X ( lt ` K ) Y ) -> E. r e. ( Atoms ` K ) ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) |
| 32 |
21 1 28 29 4
|
islpln2 |
|- ( K e. HL -> ( Y e. P <-> ( Y e. ( Base ` K ) /\ E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) ( s =/= t /\ -. u .<_ ( s ( join ` K ) t ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) ) ) ) |
| 33 |
32
|
adantr |
|- ( ( K e. HL /\ X e. N ) -> ( Y e. P <-> ( Y e. ( Base ` K ) /\ E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) ( s =/= t /\ -. u .<_ ( s ( join ` K ) t ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) ) ) ) |
| 34 |
|
simp3 |
|- ( ( s =/= t /\ -. u .<_ ( s ( join ` K ) t ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) -> Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) |
| 35 |
21 28 29 3
|
islln2 |
|- ( K e. HL -> ( X e. N <-> ( X e. ( Base ` K ) /\ E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) ) ) |
| 36 |
|
simp3l |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> X C ( X ( join ` K ) r ) ) |
| 37 |
|
simp3r |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> ( X ( join ` K ) r ) .<_ Y ) |
| 38 |
|
simp12r |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> X = ( p ( join ` K ) q ) ) |
| 39 |
38
|
oveq1d |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> ( X ( join ` K ) r ) = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) |
| 40 |
|
simp22 |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) |
| 41 |
37 39 40
|
3brtr3d |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> ( ( p ( join ` K ) q ) ( join ` K ) r ) .<_ ( ( s ( join ` K ) t ) ( join ` K ) u ) ) |
| 42 |
|
simp111 |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> K e. HL ) |
| 43 |
|
simp112 |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> p e. ( Atoms ` K ) ) |
| 44 |
|
simp113 |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> q e. ( Atoms ` K ) ) |
| 45 |
|
simp23 |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> r e. ( Atoms ` K ) ) |
| 46 |
43 44 45
|
3jca |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) ) |
| 47 |
|
simp13l |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> s e. ( Atoms ` K ) ) |
| 48 |
|
simp13r |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> t e. ( Atoms ` K ) ) |
| 49 |
|
simp21 |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> u e. ( Atoms ` K ) ) |
| 50 |
47 48 49
|
3jca |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) ) |
| 51 |
36 38 39
|
3brtr3d |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> ( p ( join ` K ) q ) C ( ( p ( join ` K ) q ) ( join ` K ) r ) ) |
| 52 |
21 28 29
|
hlatjcl |
|- ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) -> ( p ( join ` K ) q ) e. ( Base ` K ) ) |
| 53 |
42 43 44 52
|
syl3anc |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> ( p ( join ` K ) q ) e. ( Base ` K ) ) |
| 54 |
21 1 28 2 29
|
cvr1 |
|- ( ( K e. HL /\ ( p ( join ` K ) q ) e. ( Base ` K ) /\ r e. ( Atoms ` K ) ) -> ( -. r .<_ ( p ( join ` K ) q ) <-> ( p ( join ` K ) q ) C ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) |
| 55 |
42 53 45 54
|
syl3anc |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> ( -. r .<_ ( p ( join ` K ) q ) <-> ( p ( join ` K ) q ) C ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) |
| 56 |
51 55
|
mpbird |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> -. r .<_ ( p ( join ` K ) q ) ) |
| 57 |
|
simp12l |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> p =/= q ) |
| 58 |
1 28 29
|
3at |
|- ( ( ( K e. HL /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) ) /\ ( -. r .<_ ( p ( join ` K ) q ) /\ p =/= q ) ) -> ( ( ( p ( join ` K ) q ) ( join ` K ) r ) .<_ ( ( s ( join ` K ) t ) ( join ` K ) u ) <-> ( ( p ( join ` K ) q ) ( join ` K ) r ) = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) ) |
| 59 |
42 46 50 56 57 58
|
syl32anc |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> ( ( ( p ( join ` K ) q ) ( join ` K ) r ) .<_ ( ( s ( join ` K ) t ) ( join ` K ) u ) <-> ( ( p ( join ` K ) q ) ( join ` K ) r ) = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) ) |
| 60 |
41 59
|
mpbid |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> ( ( p ( join ` K ) q ) ( join ` K ) r ) = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) |
| 61 |
60 39 40
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> ( X ( join ` K ) r ) = Y ) |
| 62 |
36 61
|
breqtrd |
|- ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) /\ ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) /\ ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> X C Y ) |
| 63 |
62
|
3exp |
|- ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) -> ( ( u e. ( Atoms ` K ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) /\ r e. ( Atoms ` K ) ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) |
| 64 |
63
|
3expd |
|- ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ X = ( p ( join ` K ) q ) ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) -> ( u e. ( Atoms ` K ) -> ( Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) ) |
| 65 |
64
|
3exp |
|- ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) -> ( ( p =/= q /\ X = ( p ( join ` K ) q ) ) -> ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) -> ( u e. ( Atoms ` K ) -> ( Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) ) ) ) |
| 66 |
65
|
3expib |
|- ( K e. HL -> ( ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) -> ( ( p =/= q /\ X = ( p ( join ` K ) q ) ) -> ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) -> ( u e. ( Atoms ` K ) -> ( Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) ) ) ) ) |
| 67 |
66
|
rexlimdvv |
|- ( K e. HL -> ( E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) ( p =/= q /\ X = ( p ( join ` K ) q ) ) -> ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) -> ( u e. ( Atoms ` K ) -> ( Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) ) ) ) |
| 68 |
67
|
adantld |
|- ( K e. HL -> ( ( X e. ( Base ` K ) /\ E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) -> ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) -> ( u e. ( Atoms ` K ) -> ( Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) ) ) ) |
| 69 |
35 68
|
sylbid |
|- ( K e. HL -> ( X e. N -> ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) -> ( u e. ( Atoms ` K ) -> ( Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) ) ) ) |
| 70 |
69
|
imp31 |
|- ( ( ( K e. HL /\ X e. N ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) -> ( u e. ( Atoms ` K ) -> ( Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) ) |
| 71 |
34 70
|
syl7 |
|- ( ( ( K e. HL /\ X e. N ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) -> ( u e. ( Atoms ` K ) -> ( ( s =/= t /\ -. u .<_ ( s ( join ` K ) t ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) ) |
| 72 |
71
|
rexlimdv |
|- ( ( ( K e. HL /\ X e. N ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) -> ( E. u e. ( Atoms ` K ) ( s =/= t /\ -. u .<_ ( s ( join ` K ) t ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) |
| 73 |
72
|
rexlimdvva |
|- ( ( K e. HL /\ X e. N ) -> ( E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) ( s =/= t /\ -. u .<_ ( s ( join ` K ) t ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) |
| 74 |
73
|
adantld |
|- ( ( K e. HL /\ X e. N ) -> ( ( Y e. ( Base ` K ) /\ E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) ( s =/= t /\ -. u .<_ ( s ( join ` K ) t ) /\ Y = ( ( s ( join ` K ) t ) ( join ` K ) u ) ) ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) |
| 75 |
33 74
|
sylbid |
|- ( ( K e. HL /\ X e. N ) -> ( Y e. P -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) ) |
| 76 |
75
|
3impia |
|- ( ( K e. HL /\ X e. N /\ Y e. P ) -> ( r e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) ) |
| 77 |
76
|
rexlimdv |
|- ( ( K e. HL /\ X e. N /\ Y e. P ) -> ( E. r e. ( Atoms ` K ) ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) -> X C Y ) ) |
| 78 |
77
|
imp |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ E. r e. ( Atoms ` K ) ( X C ( X ( join ` K ) r ) /\ ( X ( join ` K ) r ) .<_ Y ) ) -> X C Y ) |
| 79 |
31 78
|
syldan |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X ( lt ` K ) Y ) -> X C Y ) |
| 80 |
18 79
|
syldan |
|- ( ( ( K e. HL /\ X e. N /\ Y e. P ) /\ X .<_ Y ) -> X C Y ) |