| Step | Hyp | Ref | Expression | 
						
							| 1 |  | llni2.j |  |-  .\/ = ( join ` K ) | 
						
							| 2 |  | llni2.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | llni2.n |  |-  N = ( LLines ` K ) | 
						
							| 4 |  | simpl2 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. A ) | 
						
							| 5 |  | simpl3 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. A ) | 
						
							| 6 |  | simpr |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P =/= Q ) | 
						
							| 7 |  | eqidd |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) = ( P .\/ Q ) ) | 
						
							| 8 |  | neeq1 |  |-  ( r = P -> ( r =/= s <-> P =/= s ) ) | 
						
							| 9 |  | oveq1 |  |-  ( r = P -> ( r .\/ s ) = ( P .\/ s ) ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( r = P -> ( ( P .\/ Q ) = ( r .\/ s ) <-> ( P .\/ Q ) = ( P .\/ s ) ) ) | 
						
							| 11 | 8 10 | anbi12d |  |-  ( r = P -> ( ( r =/= s /\ ( P .\/ Q ) = ( r .\/ s ) ) <-> ( P =/= s /\ ( P .\/ Q ) = ( P .\/ s ) ) ) ) | 
						
							| 12 |  | neeq2 |  |-  ( s = Q -> ( P =/= s <-> P =/= Q ) ) | 
						
							| 13 |  | oveq2 |  |-  ( s = Q -> ( P .\/ s ) = ( P .\/ Q ) ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( s = Q -> ( ( P .\/ Q ) = ( P .\/ s ) <-> ( P .\/ Q ) = ( P .\/ Q ) ) ) | 
						
							| 15 | 12 14 | anbi12d |  |-  ( s = Q -> ( ( P =/= s /\ ( P .\/ Q ) = ( P .\/ s ) ) <-> ( P =/= Q /\ ( P .\/ Q ) = ( P .\/ Q ) ) ) ) | 
						
							| 16 | 11 15 | rspc2ev |  |-  ( ( P e. A /\ Q e. A /\ ( P =/= Q /\ ( P .\/ Q ) = ( P .\/ Q ) ) ) -> E. r e. A E. s e. A ( r =/= s /\ ( P .\/ Q ) = ( r .\/ s ) ) ) | 
						
							| 17 | 4 5 6 7 16 | syl112anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> E. r e. A E. s e. A ( r =/= s /\ ( P .\/ Q ) = ( r .\/ s ) ) ) | 
						
							| 18 |  | simpl1 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> K e. HL ) | 
						
							| 19 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 20 | 19 1 2 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 22 | 19 1 2 3 | islln3 |  |-  ( ( K e. HL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) e. N <-> E. r e. A E. s e. A ( r =/= s /\ ( P .\/ Q ) = ( r .\/ s ) ) ) ) | 
						
							| 23 | 18 21 22 | syl2anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( ( P .\/ Q ) e. N <-> E. r e. A E. s e. A ( r =/= s /\ ( P .\/ Q ) = ( r .\/ s ) ) ) ) | 
						
							| 24 | 17 23 | mpbird |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. N ) |