Step |
Hyp |
Ref |
Expression |
1 |
|
llni2.j |
|- .\/ = ( join ` K ) |
2 |
|
llni2.a |
|- A = ( Atoms ` K ) |
3 |
|
llni2.n |
|- N = ( LLines ` K ) |
4 |
|
simpl2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. A ) |
5 |
|
simpl3 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. A ) |
6 |
|
simpr |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P =/= Q ) |
7 |
|
eqidd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) = ( P .\/ Q ) ) |
8 |
|
neeq1 |
|- ( r = P -> ( r =/= s <-> P =/= s ) ) |
9 |
|
oveq1 |
|- ( r = P -> ( r .\/ s ) = ( P .\/ s ) ) |
10 |
9
|
eqeq2d |
|- ( r = P -> ( ( P .\/ Q ) = ( r .\/ s ) <-> ( P .\/ Q ) = ( P .\/ s ) ) ) |
11 |
8 10
|
anbi12d |
|- ( r = P -> ( ( r =/= s /\ ( P .\/ Q ) = ( r .\/ s ) ) <-> ( P =/= s /\ ( P .\/ Q ) = ( P .\/ s ) ) ) ) |
12 |
|
neeq2 |
|- ( s = Q -> ( P =/= s <-> P =/= Q ) ) |
13 |
|
oveq2 |
|- ( s = Q -> ( P .\/ s ) = ( P .\/ Q ) ) |
14 |
13
|
eqeq2d |
|- ( s = Q -> ( ( P .\/ Q ) = ( P .\/ s ) <-> ( P .\/ Q ) = ( P .\/ Q ) ) ) |
15 |
12 14
|
anbi12d |
|- ( s = Q -> ( ( P =/= s /\ ( P .\/ Q ) = ( P .\/ s ) ) <-> ( P =/= Q /\ ( P .\/ Q ) = ( P .\/ Q ) ) ) ) |
16 |
11 15
|
rspc2ev |
|- ( ( P e. A /\ Q e. A /\ ( P =/= Q /\ ( P .\/ Q ) = ( P .\/ Q ) ) ) -> E. r e. A E. s e. A ( r =/= s /\ ( P .\/ Q ) = ( r .\/ s ) ) ) |
17 |
4 5 6 7 16
|
syl112anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> E. r e. A E. s e. A ( r =/= s /\ ( P .\/ Q ) = ( r .\/ s ) ) ) |
18 |
|
simpl1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> K e. HL ) |
19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
20 |
19 1 2
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
21 |
20
|
adantr |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
22 |
19 1 2 3
|
islln3 |
|- ( ( K e. HL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) e. N <-> E. r e. A E. s e. A ( r =/= s /\ ( P .\/ Q ) = ( r .\/ s ) ) ) ) |
23 |
18 21 22
|
syl2anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( ( P .\/ Q ) e. N <-> E. r e. A E. s e. A ( r =/= s /\ ( P .\/ Q ) = ( r .\/ s ) ) ) ) |
24 |
17 23
|
mpbird |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. N ) |