| Step | Hyp | Ref | Expression | 
						
							| 1 |  | llnneat.a |  |-  A = ( Atoms ` K ) | 
						
							| 2 |  | llnneat.n |  |-  N = ( LLines ` K ) | 
						
							| 3 |  | hllat |  |-  ( K e. HL -> K e. Lat ) | 
						
							| 4 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 5 | 4 2 | llnbase |  |-  ( X e. N -> X e. ( Base ` K ) ) | 
						
							| 6 |  | eqid |  |-  ( le ` K ) = ( le ` K ) | 
						
							| 7 | 4 6 | latref |  |-  ( ( K e. Lat /\ X e. ( Base ` K ) ) -> X ( le ` K ) X ) | 
						
							| 8 | 3 5 7 | syl2an |  |-  ( ( K e. HL /\ X e. N ) -> X ( le ` K ) X ) | 
						
							| 9 | 6 1 2 | llnnleat |  |-  ( ( K e. HL /\ X e. N /\ X e. A ) -> -. X ( le ` K ) X ) | 
						
							| 10 | 9 | 3expia |  |-  ( ( K e. HL /\ X e. N ) -> ( X e. A -> -. X ( le ` K ) X ) ) | 
						
							| 11 | 8 10 | mt2d |  |-  ( ( K e. HL /\ X e. N ) -> -. X e. A ) |