| Step | Hyp | Ref | Expression | 
						
							| 1 |  | llnset.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | llnset.c |  |-  C = (  | 
						
							| 3 |  | llnset.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | llnset.n |  |-  N = ( LLines ` K ) | 
						
							| 5 |  | elex |  |-  ( K e. D -> K e. _V ) | 
						
							| 6 |  | fveq2 |  |-  ( k = K -> ( Base ` k ) = ( Base ` K ) ) | 
						
							| 7 | 6 1 | eqtr4di |  |-  ( k = K -> ( Base ` k ) = B ) | 
						
							| 8 |  | fveq2 |  |-  ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) | 
						
							| 9 | 8 3 | eqtr4di |  |-  ( k = K -> ( Atoms ` k ) = A ) | 
						
							| 10 |  | fveq2 |  |-  ( k = K -> (  | 
						
							| 11 | 10 2 | eqtr4di |  |-  ( k = K -> (  | 
						
							| 12 | 11 | breqd |  |-  ( k = K -> ( p (  p C x ) ) | 
						
							| 13 | 9 12 | rexeqbidv |  |-  ( k = K -> ( E. p e. ( Atoms ` k ) p (  E. p e. A p C x ) ) | 
						
							| 14 | 7 13 | rabeqbidv |  |-  ( k = K -> { x e. ( Base ` k ) | E. p e. ( Atoms ` k ) p (  | 
						
							| 15 |  | df-llines |  |-  LLines = ( k e. _V |-> { x e. ( Base ` k ) | E. p e. ( Atoms ` k ) p (  | 
						
							| 16 | 1 | fvexi |  |-  B e. _V | 
						
							| 17 | 16 | rabex |  |-  { x e. B | E. p e. A p C x } e. _V | 
						
							| 18 | 14 15 17 | fvmpt |  |-  ( K e. _V -> ( LLines ` K ) = { x e. B | E. p e. A p C x } ) | 
						
							| 19 | 4 18 | eqtrid |  |-  ( K e. _V -> N = { x e. B | E. p e. A p C x } ) | 
						
							| 20 | 5 19 | syl |  |-  ( K e. D -> N = { x e. B | E. p e. A p C x } ) |