| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltleft |
|- ( A e. No -> ( _Left ` A ) < |
| 2 |
|
ssltright |
|- ( A e. No -> { A } < |
| 3 |
|
snnzg |
|- ( A e. No -> { A } =/= (/) ) |
| 4 |
|
sslttr |
|- ( ( ( _Left ` A ) < ( _Left ` A ) < |
| 5 |
1 2 3 4
|
syl3anc |
|- ( A e. No -> ( _Left ` A ) < |
| 6 |
|
0elpw |
|- (/) e. ~P No |
| 7 |
|
nulssgt |
|- ( (/) e. ~P No -> (/) < |
| 8 |
6 7
|
mp1i |
|- ( -. A e. No -> (/) < |
| 9 |
|
leftf |
|- _Left : No --> ~P No |
| 10 |
9
|
fdmi |
|- dom _Left = No |
| 11 |
10
|
eleq2i |
|- ( A e. dom _Left <-> A e. No ) |
| 12 |
|
ndmfv |
|- ( -. A e. dom _Left -> ( _Left ` A ) = (/) ) |
| 13 |
11 12
|
sylnbir |
|- ( -. A e. No -> ( _Left ` A ) = (/) ) |
| 14 |
|
rightf |
|- _Right : No --> ~P No |
| 15 |
14
|
fdmi |
|- dom _Right = No |
| 16 |
15
|
eleq2i |
|- ( A e. dom _Right <-> A e. No ) |
| 17 |
|
ndmfv |
|- ( -. A e. dom _Right -> ( _Right ` A ) = (/) ) |
| 18 |
16 17
|
sylnbir |
|- ( -. A e. No -> ( _Right ` A ) = (/) ) |
| 19 |
8 13 18
|
3brtr4d |
|- ( -. A e. No -> ( _Left ` A ) < |
| 20 |
5 19
|
pm2.61i |
|- ( _Left ` A ) < |