Step |
Hyp |
Ref |
Expression |
1 |
|
lmcau.1 |
|- J = ( MetOpen ` D ) |
2 |
1
|
methaus |
|- ( D e. ( *Met ` X ) -> J e. Haus ) |
3 |
|
lmfun |
|- ( J e. Haus -> Fun ( ~~>t ` J ) ) |
4 |
|
funfvbrb |
|- ( Fun ( ~~>t ` J ) -> ( f e. dom ( ~~>t ` J ) <-> f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) ) |
5 |
2 3 4
|
3syl |
|- ( D e. ( *Met ` X ) -> ( f e. dom ( ~~>t ` J ) <-> f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) ) |
6 |
|
id |
|- ( D e. ( *Met ` X ) -> D e. ( *Met ` X ) ) |
7 |
1 6
|
lmmbr |
|- ( D e. ( *Met ` X ) -> ( f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) <-> ( f e. ( X ^pm CC ) /\ ( ( ~~>t ` J ) ` f ) e. X /\ A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) ) ) ) |
8 |
7
|
biimpa |
|- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> ( f e. ( X ^pm CC ) /\ ( ( ~~>t ` J ) ` f ) e. X /\ A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) ) ) |
9 |
8
|
simp1d |
|- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> f e. ( X ^pm CC ) ) |
10 |
|
simprr |
|- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
11 |
|
simplll |
|- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> D e. ( *Met ` X ) ) |
12 |
8
|
simp2d |
|- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> ( ( ~~>t ` J ) ` f ) e. X ) |
13 |
12
|
ad2antrr |
|- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( ~~>t ` J ) ` f ) e. X ) |
14 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
15 |
14
|
ad2antlr |
|- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> x e. RR ) |
16 |
|
uzid |
|- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
17 |
16
|
ad2antrl |
|- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> j e. ( ZZ>= ` j ) ) |
18 |
17
|
fvresd |
|- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( f |` ( ZZ>= ` j ) ) ` j ) = ( f ` j ) ) |
19 |
10 17
|
ffvelrnd |
|- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( f |` ( ZZ>= ` j ) ) ` j ) e. ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
20 |
18 19
|
eqeltrrd |
|- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( f ` j ) e. ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
21 |
|
blhalf |
|- ( ( ( D e. ( *Met ` X ) /\ ( ( ~~>t ` J ) ` f ) e. X ) /\ ( x e. RR /\ ( f ` j ) e. ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) C_ ( ( f ` j ) ( ball ` D ) x ) ) |
22 |
11 13 15 20 21
|
syl22anc |
|- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) C_ ( ( f ` j ) ( ball ` D ) x ) ) |
23 |
10 22
|
fssd |
|- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) |
24 |
|
rphalfcl |
|- ( x e. RR+ -> ( x / 2 ) e. RR+ ) |
25 |
8
|
simp3d |
|- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) ) |
26 |
|
oveq2 |
|- ( y = ( x / 2 ) -> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) = ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
27 |
26
|
feq3d |
|- ( y = ( x / 2 ) -> ( ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) <-> ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
28 |
27
|
rexbidv |
|- ( y = ( x / 2 ) -> ( E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) <-> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
29 |
28
|
rspcv |
|- ( ( x / 2 ) e. RR+ -> ( A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) -> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
30 |
24 25 29
|
syl2im |
|- ( x e. RR+ -> ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
31 |
30
|
impcom |
|- ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) -> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
32 |
|
uzf |
|- ZZ>= : ZZ --> ~P ZZ |
33 |
|
ffn |
|- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
34 |
|
reseq2 |
|- ( u = ( ZZ>= ` j ) -> ( f |` u ) = ( f |` ( ZZ>= ` j ) ) ) |
35 |
|
id |
|- ( u = ( ZZ>= ` j ) -> u = ( ZZ>= ` j ) ) |
36 |
34 35
|
feq12d |
|- ( u = ( ZZ>= ` j ) -> ( ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) <-> ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
37 |
36
|
rexrn |
|- ( ZZ>= Fn ZZ -> ( E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) <-> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
38 |
32 33 37
|
mp2b |
|- ( E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) <-> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
39 |
31 38
|
sylib |
|- ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) -> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
40 |
23 39
|
reximddv |
|- ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) -> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) |
41 |
40
|
ralrimiva |
|- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) |
42 |
|
iscau |
|- ( D e. ( *Met ` X ) -> ( f e. ( Cau ` D ) <-> ( f e. ( X ^pm CC ) /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) ) ) |
43 |
42
|
adantr |
|- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> ( f e. ( Cau ` D ) <-> ( f e. ( X ^pm CC ) /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) ) ) |
44 |
9 41 43
|
mpbir2and |
|- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> f e. ( Cau ` D ) ) |
45 |
44
|
ex |
|- ( D e. ( *Met ` X ) -> ( f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) -> f e. ( Cau ` D ) ) ) |
46 |
5 45
|
sylbid |
|- ( D e. ( *Met ` X ) -> ( f e. dom ( ~~>t ` J ) -> f e. ( Cau ` D ) ) ) |
47 |
46
|
ssrdv |
|- ( D e. ( *Met ` X ) -> dom ( ~~>t ` J ) C_ ( Cau ` D ) ) |