Metamath Proof Explorer


Theorem lmcld

Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013)

Ref Expression
Hypotheses lmff.1
|- Z = ( ZZ>= ` M )
lmff.3
|- ( ph -> J e. ( TopOn ` X ) )
lmff.4
|- ( ph -> M e. ZZ )
lmcls.5
|- ( ph -> F ( ~~>t ` J ) P )
lmcls.7
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. S )
lmcld.8
|- ( ph -> S e. ( Clsd ` J ) )
Assertion lmcld
|- ( ph -> P e. S )

Proof

Step Hyp Ref Expression
1 lmff.1
 |-  Z = ( ZZ>= ` M )
2 lmff.3
 |-  ( ph -> J e. ( TopOn ` X ) )
3 lmff.4
 |-  ( ph -> M e. ZZ )
4 lmcls.5
 |-  ( ph -> F ( ~~>t ` J ) P )
5 lmcls.7
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. S )
6 lmcld.8
 |-  ( ph -> S e. ( Clsd ` J ) )
7 eqid
 |-  U. J = U. J
8 7 cldss
 |-  ( S e. ( Clsd ` J ) -> S C_ U. J )
9 6 8 syl
 |-  ( ph -> S C_ U. J )
10 toponuni
 |-  ( J e. ( TopOn ` X ) -> X = U. J )
11 2 10 syl
 |-  ( ph -> X = U. J )
12 9 11 sseqtrrd
 |-  ( ph -> S C_ X )
13 1 2 3 4 5 12 lmcls
 |-  ( ph -> P e. ( ( cls ` J ) ` S ) )
14 cldcls
 |-  ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = S )
15 6 14 syl
 |-  ( ph -> ( ( cls ` J ) ` S ) = S )
16 13 15 eleqtrd
 |-  ( ph -> P e. S )