| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmclim.2 |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 2 |  | lmclim.3 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | simpr |  |-  ( ( M e. ZZ /\ F : Z --> CC ) -> F : Z --> CC ) | 
						
							| 4 |  | uzssz |  |-  ( ZZ>= ` M ) C_ ZZ | 
						
							| 5 |  | zsscn |  |-  ZZ C_ CC | 
						
							| 6 | 4 5 | sstri |  |-  ( ZZ>= ` M ) C_ CC | 
						
							| 7 | 2 6 | eqsstri |  |-  Z C_ CC | 
						
							| 8 |  | cnex |  |-  CC e. _V | 
						
							| 9 |  | elpm2r |  |-  ( ( ( CC e. _V /\ CC e. _V ) /\ ( F : Z --> CC /\ Z C_ CC ) ) -> F e. ( CC ^pm CC ) ) | 
						
							| 10 | 8 8 9 | mpanl12 |  |-  ( ( F : Z --> CC /\ Z C_ CC ) -> F e. ( CC ^pm CC ) ) | 
						
							| 11 | 3 7 10 | sylancl |  |-  ( ( M e. ZZ /\ F : Z --> CC ) -> F e. ( CC ^pm CC ) ) | 
						
							| 12 |  | fdm |  |-  ( F : Z --> CC -> dom F = Z ) | 
						
							| 13 |  | eqimss2 |  |-  ( dom F = Z -> Z C_ dom F ) | 
						
							| 14 | 3 12 13 | 3syl |  |-  ( ( M e. ZZ /\ F : Z --> CC ) -> Z C_ dom F ) | 
						
							| 15 | 1 2 | lmclim |  |-  ( ( M e. ZZ /\ Z C_ dom F ) -> ( F ( ~~>t ` J ) P <-> ( F e. ( CC ^pm CC ) /\ F ~~> P ) ) ) | 
						
							| 16 | 14 15 | syldan |  |-  ( ( M e. ZZ /\ F : Z --> CC ) -> ( F ( ~~>t ` J ) P <-> ( F e. ( CC ^pm CC ) /\ F ~~> P ) ) ) | 
						
							| 17 | 11 16 | mpbirand |  |-  ( ( M e. ZZ /\ F : Z --> CC ) -> ( F ( ~~>t ` J ) P <-> F ~~> P ) ) |