Step |
Hyp |
Ref |
Expression |
1 |
|
lmclim.2 |
|- J = ( TopOpen ` CCfld ) |
2 |
|
lmclim.3 |
|- Z = ( ZZ>= ` M ) |
3 |
|
simpr |
|- ( ( M e. ZZ /\ F : Z --> CC ) -> F : Z --> CC ) |
4 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
5 |
|
zsscn |
|- ZZ C_ CC |
6 |
4 5
|
sstri |
|- ( ZZ>= ` M ) C_ CC |
7 |
2 6
|
eqsstri |
|- Z C_ CC |
8 |
|
cnex |
|- CC e. _V |
9 |
|
elpm2r |
|- ( ( ( CC e. _V /\ CC e. _V ) /\ ( F : Z --> CC /\ Z C_ CC ) ) -> F e. ( CC ^pm CC ) ) |
10 |
8 8 9
|
mpanl12 |
|- ( ( F : Z --> CC /\ Z C_ CC ) -> F e. ( CC ^pm CC ) ) |
11 |
3 7 10
|
sylancl |
|- ( ( M e. ZZ /\ F : Z --> CC ) -> F e. ( CC ^pm CC ) ) |
12 |
|
fdm |
|- ( F : Z --> CC -> dom F = Z ) |
13 |
|
eqimss2 |
|- ( dom F = Z -> Z C_ dom F ) |
14 |
3 12 13
|
3syl |
|- ( ( M e. ZZ /\ F : Z --> CC ) -> Z C_ dom F ) |
15 |
1 2
|
lmclim |
|- ( ( M e. ZZ /\ Z C_ dom F ) -> ( F ( ~~>t ` J ) P <-> ( F e. ( CC ^pm CC ) /\ F ~~> P ) ) ) |
16 |
14 15
|
syldan |
|- ( ( M e. ZZ /\ F : Z --> CC ) -> ( F ( ~~>t ` J ) P <-> ( F e. ( CC ^pm CC ) /\ F ~~> P ) ) ) |
17 |
11 16
|
mpbirand |
|- ( ( M e. ZZ /\ F : Z --> CC ) -> ( F ( ~~>t ` J ) P <-> F ~~> P ) ) |