Metamath Proof Explorer


Theorem lmcn

Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014)

Ref Expression
Hypotheses lmcnp.3
|- ( ph -> F ( ~~>t ` J ) P )
lmcn.4
|- ( ph -> G e. ( J Cn K ) )
Assertion lmcn
|- ( ph -> ( G o. F ) ( ~~>t ` K ) ( G ` P ) )

Proof

Step Hyp Ref Expression
1 lmcnp.3
 |-  ( ph -> F ( ~~>t ` J ) P )
2 lmcn.4
 |-  ( ph -> G e. ( J Cn K ) )
3 cntop1
 |-  ( G e. ( J Cn K ) -> J e. Top )
4 2 3 syl
 |-  ( ph -> J e. Top )
5 toptopon2
 |-  ( J e. Top <-> J e. ( TopOn ` U. J ) )
6 4 5 sylib
 |-  ( ph -> J e. ( TopOn ` U. J ) )
7 lmcl
 |-  ( ( J e. ( TopOn ` U. J ) /\ F ( ~~>t ` J ) P ) -> P e. U. J )
8 6 1 7 syl2anc
 |-  ( ph -> P e. U. J )
9 eqid
 |-  U. J = U. J
10 9 cncnpi
 |-  ( ( G e. ( J Cn K ) /\ P e. U. J ) -> G e. ( ( J CnP K ) ` P ) )
11 2 8 10 syl2anc
 |-  ( ph -> G e. ( ( J CnP K ) ` P ) )
12 1 11 lmcnp
 |-  ( ph -> ( G o. F ) ( ~~>t ` K ) ( G ` P ) )