| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmcnp.3 |  |-  ( ph -> F ( ~~>t ` J ) P ) | 
						
							| 2 |  | lmcn.4 |  |-  ( ph -> G e. ( J Cn K ) ) | 
						
							| 3 |  | cntop1 |  |-  ( G e. ( J Cn K ) -> J e. Top ) | 
						
							| 4 | 2 3 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 5 |  | toptopon2 |  |-  ( J e. Top <-> J e. ( TopOn ` U. J ) ) | 
						
							| 6 | 4 5 | sylib |  |-  ( ph -> J e. ( TopOn ` U. J ) ) | 
						
							| 7 |  | lmcl |  |-  ( ( J e. ( TopOn ` U. J ) /\ F ( ~~>t ` J ) P ) -> P e. U. J ) | 
						
							| 8 | 6 1 7 | syl2anc |  |-  ( ph -> P e. U. J ) | 
						
							| 9 |  | eqid |  |-  U. J = U. J | 
						
							| 10 | 9 | cncnpi |  |-  ( ( G e. ( J Cn K ) /\ P e. U. J ) -> G e. ( ( J CnP K ) ` P ) ) | 
						
							| 11 | 2 8 10 | syl2anc |  |-  ( ph -> G e. ( ( J CnP K ) ` P ) ) | 
						
							| 12 | 1 11 | lmcnp |  |-  ( ph -> ( G o. F ) ( ~~>t ` K ) ( G ` P ) ) |