Step |
Hyp |
Ref |
Expression |
1 |
|
txlm.z |
|- Z = ( ZZ>= ` M ) |
2 |
|
txlm.m |
|- ( ph -> M e. ZZ ) |
3 |
|
txlm.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
4 |
|
txlm.k |
|- ( ph -> K e. ( TopOn ` Y ) ) |
5 |
|
txlm.f |
|- ( ph -> F : Z --> X ) |
6 |
|
txlm.g |
|- ( ph -> G : Z --> Y ) |
7 |
|
lmcn2.fl |
|- ( ph -> F ( ~~>t ` J ) R ) |
8 |
|
lmcn2.gl |
|- ( ph -> G ( ~~>t ` K ) S ) |
9 |
|
lmcn2.o |
|- ( ph -> O e. ( ( J tX K ) Cn N ) ) |
10 |
|
lmcn2.h |
|- H = ( n e. Z |-> ( ( F ` n ) O ( G ` n ) ) ) |
11 |
5
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. X ) |
12 |
6
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( G ` n ) e. Y ) |
13 |
11 12
|
opelxpd |
|- ( ( ph /\ n e. Z ) -> <. ( F ` n ) , ( G ` n ) >. e. ( X X. Y ) ) |
14 |
|
eqidd |
|- ( ph -> ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) = ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ) |
15 |
|
txtopon |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
16 |
3 4 15
|
syl2anc |
|- ( ph -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
17 |
|
cntop2 |
|- ( O e. ( ( J tX K ) Cn N ) -> N e. Top ) |
18 |
9 17
|
syl |
|- ( ph -> N e. Top ) |
19 |
|
toptopon2 |
|- ( N e. Top <-> N e. ( TopOn ` U. N ) ) |
20 |
18 19
|
sylib |
|- ( ph -> N e. ( TopOn ` U. N ) ) |
21 |
|
cnf2 |
|- ( ( ( J tX K ) e. ( TopOn ` ( X X. Y ) ) /\ N e. ( TopOn ` U. N ) /\ O e. ( ( J tX K ) Cn N ) ) -> O : ( X X. Y ) --> U. N ) |
22 |
16 20 9 21
|
syl3anc |
|- ( ph -> O : ( X X. Y ) --> U. N ) |
23 |
22
|
feqmptd |
|- ( ph -> O = ( x e. ( X X. Y ) |-> ( O ` x ) ) ) |
24 |
|
fveq2 |
|- ( x = <. ( F ` n ) , ( G ` n ) >. -> ( O ` x ) = ( O ` <. ( F ` n ) , ( G ` n ) >. ) ) |
25 |
|
df-ov |
|- ( ( F ` n ) O ( G ` n ) ) = ( O ` <. ( F ` n ) , ( G ` n ) >. ) |
26 |
24 25
|
eqtr4di |
|- ( x = <. ( F ` n ) , ( G ` n ) >. -> ( O ` x ) = ( ( F ` n ) O ( G ` n ) ) ) |
27 |
13 14 23 26
|
fmptco |
|- ( ph -> ( O o. ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ) = ( n e. Z |-> ( ( F ` n ) O ( G ` n ) ) ) ) |
28 |
27 10
|
eqtr4di |
|- ( ph -> ( O o. ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ) = H ) |
29 |
|
eqid |
|- ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) = ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) |
30 |
1 2 3 4 5 6 29
|
txlm |
|- ( ph -> ( ( F ( ~~>t ` J ) R /\ G ( ~~>t ` K ) S ) <-> ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ( ~~>t ` ( J tX K ) ) <. R , S >. ) ) |
31 |
7 8 30
|
mpbi2and |
|- ( ph -> ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ( ~~>t ` ( J tX K ) ) <. R , S >. ) |
32 |
31 9
|
lmcn |
|- ( ph -> ( O o. ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ) ( ~~>t ` N ) ( O ` <. R , S >. ) ) |
33 |
28 32
|
eqbrtrrd |
|- ( ph -> H ( ~~>t ` N ) ( O ` <. R , S >. ) ) |
34 |
|
df-ov |
|- ( R O S ) = ( O ` <. R , S >. ) |
35 |
33 34
|
breqtrrdi |
|- ( ph -> H ( ~~>t ` N ) ( R O S ) ) |