Step |
Hyp |
Ref |
Expression |
1 |
|
lmff.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
lmff.3 |
|- ( ph -> J e. ( TopOn ` X ) ) |
3 |
|
lmff.4 |
|- ( ph -> M e. ZZ ) |
4 |
|
lmff.5 |
|- ( ph -> F e. dom ( ~~>t ` J ) ) |
5 |
|
eldm2g |
|- ( F e. dom ( ~~>t ` J ) -> ( F e. dom ( ~~>t ` J ) <-> E. y <. F , y >. e. ( ~~>t ` J ) ) ) |
6 |
5
|
ibi |
|- ( F e. dom ( ~~>t ` J ) -> E. y <. F , y >. e. ( ~~>t ` J ) ) |
7 |
4 6
|
syl |
|- ( ph -> E. y <. F , y >. e. ( ~~>t ` J ) ) |
8 |
|
df-br |
|- ( F ( ~~>t ` J ) y <-> <. F , y >. e. ( ~~>t ` J ) ) |
9 |
8
|
exbii |
|- ( E. y F ( ~~>t ` J ) y <-> E. y <. F , y >. e. ( ~~>t ` J ) ) |
10 |
7 9
|
sylibr |
|- ( ph -> E. y F ( ~~>t ` J ) y ) |
11 |
|
lmcl |
|- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) y ) -> y e. X ) |
12 |
2 11
|
sylan |
|- ( ( ph /\ F ( ~~>t ` J ) y ) -> y e. X ) |
13 |
|
eleq2 |
|- ( j = X -> ( y e. j <-> y e. X ) ) |
14 |
|
feq3 |
|- ( j = X -> ( ( F |` x ) : x --> j <-> ( F |` x ) : x --> X ) ) |
15 |
14
|
rexbidv |
|- ( j = X -> ( E. x e. ran ZZ>= ( F |` x ) : x --> j <-> E. x e. ran ZZ>= ( F |` x ) : x --> X ) ) |
16 |
13 15
|
imbi12d |
|- ( j = X -> ( ( y e. j -> E. x e. ran ZZ>= ( F |` x ) : x --> j ) <-> ( y e. X -> E. x e. ran ZZ>= ( F |` x ) : x --> X ) ) ) |
17 |
2
|
lmbr |
|- ( ph -> ( F ( ~~>t ` J ) y <-> ( F e. ( X ^pm CC ) /\ y e. X /\ A. j e. J ( y e. j -> E. x e. ran ZZ>= ( F |` x ) : x --> j ) ) ) ) |
18 |
17
|
biimpa |
|- ( ( ph /\ F ( ~~>t ` J ) y ) -> ( F e. ( X ^pm CC ) /\ y e. X /\ A. j e. J ( y e. j -> E. x e. ran ZZ>= ( F |` x ) : x --> j ) ) ) |
19 |
18
|
simp3d |
|- ( ( ph /\ F ( ~~>t ` J ) y ) -> A. j e. J ( y e. j -> E. x e. ran ZZ>= ( F |` x ) : x --> j ) ) |
20 |
|
toponmax |
|- ( J e. ( TopOn ` X ) -> X e. J ) |
21 |
2 20
|
syl |
|- ( ph -> X e. J ) |
22 |
21
|
adantr |
|- ( ( ph /\ F ( ~~>t ` J ) y ) -> X e. J ) |
23 |
16 19 22
|
rspcdva |
|- ( ( ph /\ F ( ~~>t ` J ) y ) -> ( y e. X -> E. x e. ran ZZ>= ( F |` x ) : x --> X ) ) |
24 |
12 23
|
mpd |
|- ( ( ph /\ F ( ~~>t ` J ) y ) -> E. x e. ran ZZ>= ( F |` x ) : x --> X ) |
25 |
10 24
|
exlimddv |
|- ( ph -> E. x e. ran ZZ>= ( F |` x ) : x --> X ) |
26 |
|
uzf |
|- ZZ>= : ZZ --> ~P ZZ |
27 |
|
ffn |
|- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
28 |
|
reseq2 |
|- ( x = ( ZZ>= ` j ) -> ( F |` x ) = ( F |` ( ZZ>= ` j ) ) ) |
29 |
|
id |
|- ( x = ( ZZ>= ` j ) -> x = ( ZZ>= ` j ) ) |
30 |
28 29
|
feq12d |
|- ( x = ( ZZ>= ` j ) -> ( ( F |` x ) : x --> X <-> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) |
31 |
30
|
rexrn |
|- ( ZZ>= Fn ZZ -> ( E. x e. ran ZZ>= ( F |` x ) : x --> X <-> E. j e. ZZ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) |
32 |
26 27 31
|
mp2b |
|- ( E. x e. ran ZZ>= ( F |` x ) : x --> X <-> E. j e. ZZ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) |
33 |
25 32
|
sylib |
|- ( ph -> E. j e. ZZ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) |
34 |
1
|
rexuz3 |
|- ( M e. ZZ -> ( E. j e. Z A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) <-> E. j e. ZZ A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
35 |
3 34
|
syl |
|- ( ph -> ( E. j e. Z A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) <-> E. j e. ZZ A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
36 |
18
|
simp1d |
|- ( ( ph /\ F ( ~~>t ` J ) y ) -> F e. ( X ^pm CC ) ) |
37 |
10 36
|
exlimddv |
|- ( ph -> F e. ( X ^pm CC ) ) |
38 |
|
pmfun |
|- ( F e. ( X ^pm CC ) -> Fun F ) |
39 |
37 38
|
syl |
|- ( ph -> Fun F ) |
40 |
|
ffvresb |
|- ( Fun F -> ( ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X <-> A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
41 |
39 40
|
syl |
|- ( ph -> ( ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X <-> A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
42 |
41
|
rexbidv |
|- ( ph -> ( E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X <-> E. j e. Z A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
43 |
41
|
rexbidv |
|- ( ph -> ( E. j e. ZZ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X <-> E. j e. ZZ A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
44 |
35 42 43
|
3bitr4d |
|- ( ph -> ( E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X <-> E. j e. ZZ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) |
45 |
33 44
|
mpbird |
|- ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) |