Step |
Hyp |
Ref |
Expression |
1 |
|
lmfpm |
|- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> F e. ( X ^pm CC ) ) |
2 |
|
toponmax |
|- ( J e. ( TopOn ` X ) -> X e. J ) |
3 |
|
cnex |
|- CC e. _V |
4 |
|
elpmg |
|- ( ( X e. J /\ CC e. _V ) -> ( F e. ( X ^pm CC ) <-> ( Fun F /\ F C_ ( CC X. X ) ) ) ) |
5 |
2 3 4
|
sylancl |
|- ( J e. ( TopOn ` X ) -> ( F e. ( X ^pm CC ) <-> ( Fun F /\ F C_ ( CC X. X ) ) ) ) |
6 |
5
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> ( F e. ( X ^pm CC ) <-> ( Fun F /\ F C_ ( CC X. X ) ) ) ) |
7 |
1 6
|
mpbid |
|- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> ( Fun F /\ F C_ ( CC X. X ) ) ) |
8 |
7
|
simprd |
|- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> F C_ ( CC X. X ) ) |