Description: A homomorphism of left modules is a homomorphism of groups. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmghm | |- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) | |
| 2 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) | |
| 3 | 1 2 | lmhmlem | |- ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ ( Scalar ` T ) = ( Scalar ` S ) ) ) ) | 
| 4 | 3 | simprld | |- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |