Description: A homomorphism of left modules is a homomorphism of groups. (Contributed by Stefan O'Rear, 1-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lmghm | |- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) |
|
2 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) |
|
3 | 1 2 | lmhmlem | |- ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ ( Scalar ` T ) = ( Scalar ` S ) ) ) ) |
4 | 3 | simprld | |- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |