Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmlmod1 |
|- ( F e. ( S LMHom T ) -> S e. LMod ) |
2 |
|
lmhmlmod2 |
|- ( F e. ( S LMHom T ) -> T e. LMod ) |
3 |
1 2
|
2thd |
|- ( F e. ( S LMHom T ) -> ( S e. LMod <-> T e. LMod ) ) |
4 |
|
eqid |
|- ( Scalar ` S ) = ( Scalar ` S ) |
5 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
6 |
4 5
|
lmhmsca |
|- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
7 |
6
|
eqcomd |
|- ( F e. ( S LMHom T ) -> ( Scalar ` S ) = ( Scalar ` T ) ) |
8 |
7
|
fveq2d |
|- ( F e. ( S LMHom T ) -> ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` T ) ) ) |
9 |
8
|
oveq2d |
|- ( F e. ( S LMHom T ) -> ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) ) |
10 |
7 9
|
eqeq12d |
|- ( F e. ( S LMHom T ) -> ( ( Scalar ` S ) = ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) <-> ( Scalar ` T ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) ) ) |
11 |
8
|
eleq1d |
|- ( F e. ( S LMHom T ) -> ( ( Base ` ( Scalar ` S ) ) e. ( SubRing ` CCfld ) <-> ( Base ` ( Scalar ` T ) ) e. ( SubRing ` CCfld ) ) ) |
12 |
3 10 11
|
3anbi123d |
|- ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ ( Scalar ` S ) = ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) /\ ( Base ` ( Scalar ` S ) ) e. ( SubRing ` CCfld ) ) <-> ( T e. LMod /\ ( Scalar ` T ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) /\ ( Base ` ( Scalar ` T ) ) e. ( SubRing ` CCfld ) ) ) ) |
13 |
|
eqid |
|- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
14 |
4 13
|
isclm |
|- ( S e. CMod <-> ( S e. LMod /\ ( Scalar ` S ) = ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) /\ ( Base ` ( Scalar ` S ) ) e. ( SubRing ` CCfld ) ) ) |
15 |
|
eqid |
|- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
16 |
5 15
|
isclm |
|- ( T e. CMod <-> ( T e. LMod /\ ( Scalar ` T ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) /\ ( Base ` ( Scalar ` T ) ) e. ( SubRing ` CCfld ) ) ) |
17 |
12 14 16
|
3bitr4g |
|- ( F e. ( S LMHom T ) -> ( S e. CMod <-> T e. CMod ) ) |