| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmhmeql.u |  |-  U = ( LSubSp ` S ) | 
						
							| 2 |  | lmghm |  |-  ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) | 
						
							| 3 |  | lmghm |  |-  ( G e. ( S LMHom T ) -> G e. ( S GrpHom T ) ) | 
						
							| 4 |  | ghmeql |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) | 
						
							| 5 | 2 3 4 | syl2an |  |-  ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) | 
						
							| 6 |  | fveq2 |  |-  ( z = ( x ( .s ` S ) y ) -> ( F ` z ) = ( F ` ( x ( .s ` S ) y ) ) ) | 
						
							| 7 |  | fveq2 |  |-  ( z = ( x ( .s ` S ) y ) -> ( G ` z ) = ( G ` ( x ( .s ` S ) y ) ) ) | 
						
							| 8 | 6 7 | eqeq12d |  |-  ( z = ( x ( .s ` S ) y ) -> ( ( F ` z ) = ( G ` z ) <-> ( F ` ( x ( .s ` S ) y ) ) = ( G ` ( x ( .s ` S ) y ) ) ) ) | 
						
							| 9 |  | lmhmlmod1 |  |-  ( F e. ( S LMHom T ) -> S e. LMod ) | 
						
							| 10 | 9 | adantr |  |-  ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> S e. LMod ) | 
						
							| 11 | 10 | ad2antrr |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> S e. LMod ) | 
						
							| 12 |  | simplr |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> x e. ( Base ` ( Scalar ` S ) ) ) | 
						
							| 13 |  | simprl |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> y e. ( Base ` S ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 15 |  | eqid |  |-  ( Scalar ` S ) = ( Scalar ` S ) | 
						
							| 16 |  | eqid |  |-  ( .s ` S ) = ( .s ` S ) | 
						
							| 17 |  | eqid |  |-  ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) | 
						
							| 18 | 14 15 16 17 | lmodvscl |  |-  ( ( S e. LMod /\ x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) -> ( x ( .s ` S ) y ) e. ( Base ` S ) ) | 
						
							| 19 | 11 12 13 18 | syl3anc |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( .s ` S ) y ) e. ( Base ` S ) ) | 
						
							| 20 |  | oveq2 |  |-  ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` T ) ( F ` y ) ) = ( x ( .s ` T ) ( G ` y ) ) ) | 
						
							| 21 | 20 | ad2antll |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( .s ` T ) ( F ` y ) ) = ( x ( .s ` T ) ( G ` y ) ) ) | 
						
							| 22 |  | simplll |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> F e. ( S LMHom T ) ) | 
						
							| 23 |  | eqid |  |-  ( .s ` T ) = ( .s ` T ) | 
						
							| 24 | 15 17 14 16 23 | lmhmlin |  |-  ( ( F e. ( S LMHom T ) /\ x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( F ` y ) ) ) | 
						
							| 25 | 22 12 13 24 | syl3anc |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( F ` y ) ) ) | 
						
							| 26 |  | simpllr |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> G e. ( S LMHom T ) ) | 
						
							| 27 | 15 17 14 16 23 | lmhmlin |  |-  ( ( G e. ( S LMHom T ) /\ x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) -> ( G ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( G ` y ) ) ) | 
						
							| 28 | 26 12 13 27 | syl3anc |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( G ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( G ` y ) ) ) | 
						
							| 29 | 21 25 28 | 3eqtr4d |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( G ` ( x ( .s ` S ) y ) ) ) | 
						
							| 30 | 8 19 29 | elrabd |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) | 
						
							| 31 | 30 | expr |  |-  ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) | 
						
							| 32 | 31 | ralrimiva |  |-  ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) -> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) | 
						
							| 33 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 34 | 14 33 | lmhmf |  |-  ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 35 | 34 | ffnd |  |-  ( F e. ( S LMHom T ) -> F Fn ( Base ` S ) ) | 
						
							| 36 | 14 33 | lmhmf |  |-  ( G e. ( S LMHom T ) -> G : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 37 | 36 | ffnd |  |-  ( G e. ( S LMHom T ) -> G Fn ( Base ` S ) ) | 
						
							| 38 |  | fndmin |  |-  ( ( F Fn ( Base ` S ) /\ G Fn ( Base ` S ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) | 
						
							| 39 | 35 37 38 | syl2an |  |-  ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) | 
						
							| 41 |  | eleq2 |  |-  ( dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } -> ( ( x ( .s ` S ) y ) e. dom ( F i^i G ) <-> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) | 
						
							| 42 | 41 | raleqbi1dv |  |-  ( dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } -> ( A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) <-> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) | 
						
							| 43 |  | fveq2 |  |-  ( z = y -> ( F ` z ) = ( F ` y ) ) | 
						
							| 44 |  | fveq2 |  |-  ( z = y -> ( G ` z ) = ( G ` y ) ) | 
						
							| 45 | 43 44 | eqeq12d |  |-  ( z = y -> ( ( F ` z ) = ( G ` z ) <-> ( F ` y ) = ( G ` y ) ) ) | 
						
							| 46 | 45 | ralrab |  |-  ( A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } <-> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) | 
						
							| 47 | 42 46 | bitrdi |  |-  ( dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } -> ( A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) <-> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) ) | 
						
							| 48 | 40 47 | syl |  |-  ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) -> ( A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) <-> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) ) | 
						
							| 49 | 32 48 | mpbird |  |-  ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) -> A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) ) | 
						
							| 50 | 49 | ralrimiva |  |-  ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> A. x e. ( Base ` ( Scalar ` S ) ) A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) ) | 
						
							| 51 | 15 17 14 16 1 | islss4 |  |-  ( S e. LMod -> ( dom ( F i^i G ) e. U <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ A. x e. ( Base ` ( Scalar ` S ) ) A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) ) ) ) | 
						
							| 52 | 10 51 | syl |  |-  ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> ( dom ( F i^i G ) e. U <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ A. x e. ( Base ` ( Scalar ` S ) ) A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) ) ) ) | 
						
							| 53 | 5 50 52 | mpbir2and |  |-  ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> dom ( F i^i G ) e. U ) |