Metamath Proof Explorer


Theorem lmhmf

Description: A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmf.b
|- B = ( Base ` S )
lmhmf.c
|- C = ( Base ` T )
Assertion lmhmf
|- ( F e. ( S LMHom T ) -> F : B --> C )

Proof

Step Hyp Ref Expression
1 lmhmf.b
 |-  B = ( Base ` S )
2 lmhmf.c
 |-  C = ( Base ` T )
3 lmghm
 |-  ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) )
4 1 2 ghmf
 |-  ( F e. ( S GrpHom T ) -> F : B --> C )
5 3 4 syl
 |-  ( F e. ( S LMHom T ) -> F : B --> C )