Description: A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmf.b | |- B = ( Base ` S ) | |
| lmhmf.c | |- C = ( Base ` T ) | ||
| Assertion | lmhmf | |- ( F e. ( S LMHom T ) -> F : B --> C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lmhmf.b | |- B = ( Base ` S ) | |
| 2 | lmhmf.c | |- C = ( Base ` T ) | |
| 3 | lmghm | |- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) | |
| 4 | 1 2 | ghmf | |- ( F e. ( S GrpHom T ) -> F : B --> C ) | 
| 5 | 3 4 | syl | |- ( F e. ( S LMHom T ) -> F : B --> C ) |