| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lmhmf1o.x | 
							 |-  X = ( Base ` S )  | 
						
						
							| 2 | 
							
								
							 | 
							lmhmf1o.y | 
							 |-  Y = ( Base ` T )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( .s ` T ) = ( .s ` T )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( .s ` S ) = ( .s ` S )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( Scalar ` T ) = ( Scalar ` T )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Scalar ` S ) = ( Scalar ` S )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) )  | 
						
						
							| 8 | 
							
								
							 | 
							lmhmlmod2 | 
							 |-  ( F e. ( S LMHom T ) -> T e. LMod )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) -> T e. LMod )  | 
						
						
							| 10 | 
							
								
							 | 
							lmhmlmod1 | 
							 |-  ( F e. ( S LMHom T ) -> S e. LMod )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) -> S e. LMod )  | 
						
						
							| 12 | 
							
								6 5
							 | 
							lmhmsca | 
							 |-  ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							eqcomd | 
							 |-  ( F e. ( S LMHom T ) -> ( Scalar ` S ) = ( Scalar ` T ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) -> ( Scalar ` S ) = ( Scalar ` T ) )  | 
						
						
							| 15 | 
							
								
							 | 
							lmghm | 
							 |-  ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) )  | 
						
						
							| 16 | 
							
								1 2
							 | 
							ghmf1o | 
							 |-  ( F e. ( S GrpHom T ) -> ( F : X -1-1-onto-> Y <-> `' F e. ( T GrpHom S ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							 |-  ( F e. ( S LMHom T ) -> ( F : X -1-1-onto-> Y <-> `' F e. ( T GrpHom S ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							biimpa | 
							 |-  ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) -> `' F e. ( T GrpHom S ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> F e. ( S LMHom T ) )  | 
						
						
							| 20 | 
							
								14
							 | 
							fveq2d | 
							 |-  ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) -> ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` T ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eleq2d | 
							 |-  ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) -> ( a e. ( Base ` ( Scalar ` S ) ) <-> a e. ( Base ` ( Scalar ` T ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							biimpar | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> a e. ( Base ` ( Scalar ` S ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantrr | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> a e. ( Base ` ( Scalar ` S ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							f1ocnv | 
							 |-  ( F : X -1-1-onto-> Y -> `' F : Y -1-1-onto-> X )  | 
						
						
							| 25 | 
							
								
							 | 
							f1of | 
							 |-  ( `' F : Y -1-1-onto-> X -> `' F : Y --> X )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( F : X -1-1-onto-> Y -> `' F : Y --> X )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantl | 
							 |-  ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) -> `' F : Y --> X )  | 
						
						
							| 28 | 
							
								27
							 | 
							ffvelcdmda | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ b e. Y ) -> ( `' F ` b ) e. X )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantrl | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> ( `' F ` b ) e. X )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) )  | 
						
						
							| 31 | 
							
								6 30 1 4 3
							 | 
							lmhmlin | 
							 |-  ( ( F e. ( S LMHom T ) /\ a e. ( Base ` ( Scalar ` S ) ) /\ ( `' F ` b ) e. X ) -> ( F ` ( a ( .s ` S ) ( `' F ` b ) ) ) = ( a ( .s ` T ) ( F ` ( `' F ` b ) ) ) )  | 
						
						
							| 32 | 
							
								19 23 29 31
							 | 
							syl3anc | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> ( F ` ( a ( .s ` S ) ( `' F ` b ) ) ) = ( a ( .s ` T ) ( F ` ( `' F ` b ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							f1ocnvfv2 | 
							 |-  ( ( F : X -1-1-onto-> Y /\ b e. Y ) -> ( F ` ( `' F ` b ) ) = b )  | 
						
						
							| 34 | 
							
								33
							 | 
							ad2ant2l | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> ( F ` ( `' F ` b ) ) = b )  | 
						
						
							| 35 | 
							
								34
							 | 
							oveq2d | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> ( a ( .s ` T ) ( F ` ( `' F ` b ) ) ) = ( a ( .s ` T ) b ) )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							eqtrd | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> ( F ` ( a ( .s ` S ) ( `' F ` b ) ) ) = ( a ( .s ` T ) b ) )  | 
						
						
							| 37 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> F : X -1-1-onto-> Y )  | 
						
						
							| 38 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> S e. LMod )  | 
						
						
							| 39 | 
							
								1 6 4 30
							 | 
							lmodvscl | 
							 |-  ( ( S e. LMod /\ a e. ( Base ` ( Scalar ` S ) ) /\ ( `' F ` b ) e. X ) -> ( a ( .s ` S ) ( `' F ` b ) ) e. X )  | 
						
						
							| 40 | 
							
								38 23 29 39
							 | 
							syl3anc | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> ( a ( .s ` S ) ( `' F ` b ) ) e. X )  | 
						
						
							| 41 | 
							
								
							 | 
							f1ocnvfv | 
							 |-  ( ( F : X -1-1-onto-> Y /\ ( a ( .s ` S ) ( `' F ` b ) ) e. X ) -> ( ( F ` ( a ( .s ` S ) ( `' F ` b ) ) ) = ( a ( .s ` T ) b ) -> ( `' F ` ( a ( .s ` T ) b ) ) = ( a ( .s ` S ) ( `' F ` b ) ) ) )  | 
						
						
							| 42 | 
							
								37 40 41
							 | 
							syl2anc | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> ( ( F ` ( a ( .s ` S ) ( `' F ` b ) ) ) = ( a ( .s ` T ) b ) -> ( `' F ` ( a ( .s ` T ) b ) ) = ( a ( .s ` S ) ( `' F ` b ) ) ) )  | 
						
						
							| 43 | 
							
								36 42
							 | 
							mpd | 
							 |-  ( ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. Y ) ) -> ( `' F ` ( a ( .s ` T ) b ) ) = ( a ( .s ` S ) ( `' F ` b ) ) )  | 
						
						
							| 44 | 
							
								2 3 4 5 6 7 9 11 14 18 43
							 | 
							islmhmd | 
							 |-  ( ( F e. ( S LMHom T ) /\ F : X -1-1-onto-> Y ) -> `' F e. ( T LMHom S ) )  | 
						
						
							| 45 | 
							
								1 2
							 | 
							lmhmf | 
							 |-  ( F e. ( S LMHom T ) -> F : X --> Y )  | 
						
						
							| 46 | 
							
								45
							 | 
							ffnd | 
							 |-  ( F e. ( S LMHom T ) -> F Fn X )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantr | 
							 |-  ( ( F e. ( S LMHom T ) /\ `' F e. ( T LMHom S ) ) -> F Fn X )  | 
						
						
							| 48 | 
							
								2 1
							 | 
							lmhmf | 
							 |-  ( `' F e. ( T LMHom S ) -> `' F : Y --> X )  | 
						
						
							| 49 | 
							
								48
							 | 
							adantl | 
							 |-  ( ( F e. ( S LMHom T ) /\ `' F e. ( T LMHom S ) ) -> `' F : Y --> X )  | 
						
						
							| 50 | 
							
								49
							 | 
							ffnd | 
							 |-  ( ( F e. ( S LMHom T ) /\ `' F e. ( T LMHom S ) ) -> `' F Fn Y )  | 
						
						
							| 51 | 
							
								
							 | 
							dff1o4 | 
							 |-  ( F : X -1-1-onto-> Y <-> ( F Fn X /\ `' F Fn Y ) )  | 
						
						
							| 52 | 
							
								47 50 51
							 | 
							sylanbrc | 
							 |-  ( ( F e. ( S LMHom T ) /\ `' F e. ( T LMHom S ) ) -> F : X -1-1-onto-> Y )  | 
						
						
							| 53 | 
							
								44 52
							 | 
							impbida | 
							 |-  ( F e. ( S LMHom T ) -> ( F : X -1-1-onto-> Y <-> `' F e. ( T LMHom S ) ) )  |