Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmfgsplit.z |
|- .0. = ( 0g ` T ) |
2 |
|
lmhmfgsplit.k |
|- K = ( `' F " { .0. } ) |
3 |
|
lmhmfgsplit.u |
|- U = ( S |`s K ) |
4 |
|
lmhmfgsplit.v |
|- V = ( T |`s ran F ) |
5 |
|
simp3 |
|- ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) -> V e. LFinGen ) |
6 |
|
lmhmlmod2 |
|- ( F e. ( S LMHom T ) -> T e. LMod ) |
7 |
6
|
3ad2ant1 |
|- ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) -> T e. LMod ) |
8 |
|
lmhmrnlss |
|- ( F e. ( S LMHom T ) -> ran F e. ( LSubSp ` T ) ) |
9 |
8
|
3ad2ant1 |
|- ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) -> ran F e. ( LSubSp ` T ) ) |
10 |
|
eqid |
|- ( LSubSp ` T ) = ( LSubSp ` T ) |
11 |
|
eqid |
|- ( LSpan ` T ) = ( LSpan ` T ) |
12 |
4 10 11
|
islssfg |
|- ( ( T e. LMod /\ ran F e. ( LSubSp ` T ) ) -> ( V e. LFinGen <-> E. a e. ~P ran F ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) |
13 |
7 9 12
|
syl2anc |
|- ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) -> ( V e. LFinGen <-> E. a e. ~P ran F ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) |
14 |
5 13
|
mpbid |
|- ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) -> E. a e. ~P ran F ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) |
15 |
|
simpl1 |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) -> F e. ( S LMHom T ) ) |
16 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
17 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
18 |
16 17
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
19 |
|
ffn |
|- ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) |
20 |
15 18 19
|
3syl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) -> F Fn ( Base ` S ) ) |
21 |
|
elpwi |
|- ( a e. ~P ran F -> a C_ ran F ) |
22 |
21
|
ad2antrl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) -> a C_ ran F ) |
23 |
|
simprrl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) -> a e. Fin ) |
24 |
|
fipreima |
|- ( ( F Fn ( Base ` S ) /\ a C_ ran F /\ a e. Fin ) -> E. b e. ( ~P ( Base ` S ) i^i Fin ) ( F " b ) = a ) |
25 |
20 22 23 24
|
syl3anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) -> E. b e. ( ~P ( Base ` S ) i^i Fin ) ( F " b ) = a ) |
26 |
|
eqid |
|- ( LSubSp ` S ) = ( LSubSp ` S ) |
27 |
|
eqid |
|- ( LSSum ` S ) = ( LSSum ` S ) |
28 |
|
simpll1 |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> F e. ( S LMHom T ) ) |
29 |
|
lmhmlmod1 |
|- ( F e. ( S LMHom T ) -> S e. LMod ) |
30 |
29
|
3ad2ant1 |
|- ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) -> S e. LMod ) |
31 |
30
|
ad2antrr |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> S e. LMod ) |
32 |
|
inss1 |
|- ( ~P ( Base ` S ) i^i Fin ) C_ ~P ( Base ` S ) |
33 |
32
|
sseli |
|- ( b e. ( ~P ( Base ` S ) i^i Fin ) -> b e. ~P ( Base ` S ) ) |
34 |
|
elpwi |
|- ( b e. ~P ( Base ` S ) -> b C_ ( Base ` S ) ) |
35 |
33 34
|
syl |
|- ( b e. ( ~P ( Base ` S ) i^i Fin ) -> b C_ ( Base ` S ) ) |
36 |
35
|
ad2antrl |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> b C_ ( Base ` S ) ) |
37 |
|
eqid |
|- ( LSpan ` S ) = ( LSpan ` S ) |
38 |
16 26 37
|
lspcl |
|- ( ( S e. LMod /\ b C_ ( Base ` S ) ) -> ( ( LSpan ` S ) ` b ) e. ( LSubSp ` S ) ) |
39 |
31 36 38
|
syl2anc |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> ( ( LSpan ` S ) ` b ) e. ( LSubSp ` S ) ) |
40 |
16 37 11
|
lmhmlsp |
|- ( ( F e. ( S LMHom T ) /\ b C_ ( Base ` S ) ) -> ( F " ( ( LSpan ` S ) ` b ) ) = ( ( LSpan ` T ) ` ( F " b ) ) ) |
41 |
28 36 40
|
syl2anc |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> ( F " ( ( LSpan ` S ) ` b ) ) = ( ( LSpan ` T ) ` ( F " b ) ) ) |
42 |
|
fveq2 |
|- ( ( F " b ) = a -> ( ( LSpan ` T ) ` ( F " b ) ) = ( ( LSpan ` T ) ` a ) ) |
43 |
42
|
ad2antll |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> ( ( LSpan ` T ) ` ( F " b ) ) = ( ( LSpan ` T ) ` a ) ) |
44 |
|
simp2rr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> ( ( LSpan ` T ) ` a ) = ran F ) |
45 |
44
|
3expa |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> ( ( LSpan ` T ) ` a ) = ran F ) |
46 |
41 43 45
|
3eqtrd |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> ( F " ( ( LSpan ` S ) ` b ) ) = ran F ) |
47 |
26 27 1 2 16 28 39 46
|
kercvrlsm |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> ( K ( LSSum ` S ) ( ( LSpan ` S ) ` b ) ) = ( Base ` S ) ) |
48 |
47
|
oveq2d |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> ( S |`s ( K ( LSSum ` S ) ( ( LSpan ` S ) ` b ) ) ) = ( S |`s ( Base ` S ) ) ) |
49 |
16
|
ressid |
|- ( S e. LMod -> ( S |`s ( Base ` S ) ) = S ) |
50 |
30 49
|
syl |
|- ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) -> ( S |`s ( Base ` S ) ) = S ) |
51 |
50
|
ad2antrr |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> ( S |`s ( Base ` S ) ) = S ) |
52 |
48 51
|
eqtr2d |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> S = ( S |`s ( K ( LSSum ` S ) ( ( LSpan ` S ) ` b ) ) ) ) |
53 |
|
eqid |
|- ( S |`s ( ( LSpan ` S ) ` b ) ) = ( S |`s ( ( LSpan ` S ) ` b ) ) |
54 |
|
eqid |
|- ( S |`s ( K ( LSSum ` S ) ( ( LSpan ` S ) ` b ) ) ) = ( S |`s ( K ( LSSum ` S ) ( ( LSpan ` S ) ` b ) ) ) |
55 |
2 1 26
|
lmhmkerlss |
|- ( F e. ( S LMHom T ) -> K e. ( LSubSp ` S ) ) |
56 |
55
|
3ad2ant1 |
|- ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) -> K e. ( LSubSp ` S ) ) |
57 |
56
|
ad2antrr |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> K e. ( LSubSp ` S ) ) |
58 |
|
simpll2 |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> U e. LFinGen ) |
59 |
|
inss2 |
|- ( ~P ( Base ` S ) i^i Fin ) C_ Fin |
60 |
59
|
sseli |
|- ( b e. ( ~P ( Base ` S ) i^i Fin ) -> b e. Fin ) |
61 |
60
|
ad2antrl |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> b e. Fin ) |
62 |
37 16 53
|
islssfgi |
|- ( ( S e. LMod /\ b C_ ( Base ` S ) /\ b e. Fin ) -> ( S |`s ( ( LSpan ` S ) ` b ) ) e. LFinGen ) |
63 |
31 36 61 62
|
syl3anc |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> ( S |`s ( ( LSpan ` S ) ` b ) ) e. LFinGen ) |
64 |
26 27 3 53 54 31 57 39 58 63
|
lsmfgcl |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> ( S |`s ( K ( LSSum ` S ) ( ( LSpan ` S ) ` b ) ) ) e. LFinGen ) |
65 |
52 64
|
eqeltrd |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) /\ ( b e. ( ~P ( Base ` S ) i^i Fin ) /\ ( F " b ) = a ) ) -> S e. LFinGen ) |
66 |
25 65
|
rexlimddv |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) /\ ( a e. ~P ran F /\ ( a e. Fin /\ ( ( LSpan ` T ) ` a ) = ran F ) ) ) -> S e. LFinGen ) |
67 |
14 66
|
rexlimddv |
|- ( ( F e. ( S LMHom T ) /\ U e. LFinGen /\ V e. LFinGen ) -> S e. LFinGen ) |