Metamath Proof Explorer


Theorem lmhmghmd

Description: A module homomorphism is a group homomorphism. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypothesis lmhmghmd.1
|- ( ph -> F e. ( S LMHom T ) )
Assertion lmhmghmd
|- ( ph -> F e. ( S GrpHom T ) )

Proof

Step Hyp Ref Expression
1 lmhmghmd.1
 |-  ( ph -> F e. ( S LMHom T ) )
2 lmghm
 |-  ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) )
3 1 2 syl
 |-  ( ph -> F e. ( S GrpHom T ) )