| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmhmima.x |  |-  X = ( LSubSp ` S ) | 
						
							| 2 |  | lmhmima.y |  |-  Y = ( LSubSp ` T ) | 
						
							| 3 |  | lmghm |  |-  ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) | 
						
							| 4 |  | lmhmlmod1 |  |-  ( F e. ( S LMHom T ) -> S e. LMod ) | 
						
							| 5 |  | simpr |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> U e. X ) | 
						
							| 6 | 1 | lsssubg |  |-  ( ( S e. LMod /\ U e. X ) -> U e. ( SubGrp ` S ) ) | 
						
							| 7 | 4 5 6 | syl2an2r |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> U e. ( SubGrp ` S ) ) | 
						
							| 8 |  | ghmima |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F " U ) e. ( SubGrp ` T ) ) | 
						
							| 9 | 3 7 8 | syl2an2r |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( F " U ) e. ( SubGrp ` T ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 11 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 12 | 10 11 | lmhmf |  |-  ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 14 |  | ffn |  |-  ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> F Fn ( Base ` S ) ) | 
						
							| 16 | 10 1 | lssss |  |-  ( U e. X -> U C_ ( Base ` S ) ) | 
						
							| 17 | 5 16 | syl |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> U C_ ( Base ` S ) ) | 
						
							| 18 | 15 17 | fvelimabd |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( b e. ( F " U ) <-> E. c e. U ( F ` c ) = b ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> ( b e. ( F " U ) <-> E. c e. U ( F ` c ) = b ) ) | 
						
							| 20 |  | simpll |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> F e. ( S LMHom T ) ) | 
						
							| 21 |  | eqid |  |-  ( Scalar ` S ) = ( Scalar ` S ) | 
						
							| 22 |  | eqid |  |-  ( Scalar ` T ) = ( Scalar ` T ) | 
						
							| 23 | 21 22 | lmhmsca |  |-  ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( Scalar ` T ) = ( Scalar ` S ) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` S ) ) ) | 
						
							| 26 | 25 | eleq2d |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( a e. ( Base ` ( Scalar ` T ) ) <-> a e. ( Base ` ( Scalar ` S ) ) ) ) | 
						
							| 27 | 26 | biimpa |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> a e. ( Base ` ( Scalar ` S ) ) ) | 
						
							| 28 | 27 | adantrr |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> a e. ( Base ` ( Scalar ` S ) ) ) | 
						
							| 29 | 17 | sselda |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ c e. U ) -> c e. ( Base ` S ) ) | 
						
							| 30 | 29 | adantrl |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> c e. ( Base ` S ) ) | 
						
							| 31 |  | eqid |  |-  ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) | 
						
							| 32 |  | eqid |  |-  ( .s ` S ) = ( .s ` S ) | 
						
							| 33 |  | eqid |  |-  ( .s ` T ) = ( .s ` T ) | 
						
							| 34 | 21 31 10 32 33 | lmhmlin |  |-  ( ( F e. ( S LMHom T ) /\ a e. ( Base ` ( Scalar ` S ) ) /\ c e. ( Base ` S ) ) -> ( F ` ( a ( .s ` S ) c ) ) = ( a ( .s ` T ) ( F ` c ) ) ) | 
						
							| 35 | 20 28 30 34 | syl3anc |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( F ` ( a ( .s ` S ) c ) ) = ( a ( .s ` T ) ( F ` c ) ) ) | 
						
							| 36 | 20 12 14 | 3syl |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> F Fn ( Base ` S ) ) | 
						
							| 37 |  | simplr |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> U e. X ) | 
						
							| 38 | 37 16 | syl |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> U C_ ( Base ` S ) ) | 
						
							| 39 | 4 | adantr |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> S e. LMod ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> S e. LMod ) | 
						
							| 41 |  | simprr |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> c e. U ) | 
						
							| 42 | 21 32 31 1 | lssvscl |  |-  ( ( ( S e. LMod /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ c e. U ) ) -> ( a ( .s ` S ) c ) e. U ) | 
						
							| 43 | 40 37 28 41 42 | syl22anc |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( a ( .s ` S ) c ) e. U ) | 
						
							| 44 |  | fnfvima |  |-  ( ( F Fn ( Base ` S ) /\ U C_ ( Base ` S ) /\ ( a ( .s ` S ) c ) e. U ) -> ( F ` ( a ( .s ` S ) c ) ) e. ( F " U ) ) | 
						
							| 45 | 36 38 43 44 | syl3anc |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( F ` ( a ( .s ` S ) c ) ) e. ( F " U ) ) | 
						
							| 46 | 35 45 | eqeltrrd |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( a ( .s ` T ) ( F ` c ) ) e. ( F " U ) ) | 
						
							| 47 | 46 | anassrs |  |-  ( ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) /\ c e. U ) -> ( a ( .s ` T ) ( F ` c ) ) e. ( F " U ) ) | 
						
							| 48 |  | oveq2 |  |-  ( ( F ` c ) = b -> ( a ( .s ` T ) ( F ` c ) ) = ( a ( .s ` T ) b ) ) | 
						
							| 49 | 48 | eleq1d |  |-  ( ( F ` c ) = b -> ( ( a ( .s ` T ) ( F ` c ) ) e. ( F " U ) <-> ( a ( .s ` T ) b ) e. ( F " U ) ) ) | 
						
							| 50 | 47 49 | syl5ibcom |  |-  ( ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) /\ c e. U ) -> ( ( F ` c ) = b -> ( a ( .s ` T ) b ) e. ( F " U ) ) ) | 
						
							| 51 | 50 | rexlimdva |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> ( E. c e. U ( F ` c ) = b -> ( a ( .s ` T ) b ) e. ( F " U ) ) ) | 
						
							| 52 | 19 51 | sylbid |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> ( b e. ( F " U ) -> ( a ( .s ` T ) b ) e. ( F " U ) ) ) | 
						
							| 53 | 52 | impr |  |-  ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. ( F " U ) ) ) -> ( a ( .s ` T ) b ) e. ( F " U ) ) | 
						
							| 54 | 53 | ralrimivva |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> A. a e. ( Base ` ( Scalar ` T ) ) A. b e. ( F " U ) ( a ( .s ` T ) b ) e. ( F " U ) ) | 
						
							| 55 |  | lmhmlmod2 |  |-  ( F e. ( S LMHom T ) -> T e. LMod ) | 
						
							| 56 | 55 | adantr |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> T e. LMod ) | 
						
							| 57 |  | eqid |  |-  ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) | 
						
							| 58 | 22 57 11 33 2 | islss4 |  |-  ( T e. LMod -> ( ( F " U ) e. Y <-> ( ( F " U ) e. ( SubGrp ` T ) /\ A. a e. ( Base ` ( Scalar ` T ) ) A. b e. ( F " U ) ( a ( .s ` T ) b ) e. ( F " U ) ) ) ) | 
						
							| 59 | 56 58 | syl |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( ( F " U ) e. Y <-> ( ( F " U ) e. ( SubGrp ` T ) /\ A. a e. ( Base ` ( Scalar ` T ) ) A. b e. ( F " U ) ( a ( .s ` T ) b ) e. ( F " U ) ) ) ) | 
						
							| 60 | 9 54 59 | mpbir2and |  |-  ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( F " U ) e. Y ) |