Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmima.x |
|- X = ( LSubSp ` S ) |
2 |
|
lmhmima.y |
|- Y = ( LSubSp ` T ) |
3 |
|
lmghm |
|- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
4 |
|
lmhmlmod1 |
|- ( F e. ( S LMHom T ) -> S e. LMod ) |
5 |
|
simpr |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> U e. X ) |
6 |
1
|
lsssubg |
|- ( ( S e. LMod /\ U e. X ) -> U e. ( SubGrp ` S ) ) |
7 |
4 5 6
|
syl2an2r |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> U e. ( SubGrp ` S ) ) |
8 |
|
ghmima |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F " U ) e. ( SubGrp ` T ) ) |
9 |
3 7 8
|
syl2an2r |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( F " U ) e. ( SubGrp ` T ) ) |
10 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
11 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
12 |
10 11
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
13 |
12
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
14 |
|
ffn |
|- ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) |
15 |
13 14
|
syl |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> F Fn ( Base ` S ) ) |
16 |
10 1
|
lssss |
|- ( U e. X -> U C_ ( Base ` S ) ) |
17 |
5 16
|
syl |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> U C_ ( Base ` S ) ) |
18 |
15 17
|
fvelimabd |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( b e. ( F " U ) <-> E. c e. U ( F ` c ) = b ) ) |
19 |
18
|
adantr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> ( b e. ( F " U ) <-> E. c e. U ( F ` c ) = b ) ) |
20 |
|
simpll |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> F e. ( S LMHom T ) ) |
21 |
|
eqid |
|- ( Scalar ` S ) = ( Scalar ` S ) |
22 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
23 |
21 22
|
lmhmsca |
|- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
24 |
23
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
25 |
24
|
fveq2d |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` S ) ) ) |
26 |
25
|
eleq2d |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( a e. ( Base ` ( Scalar ` T ) ) <-> a e. ( Base ` ( Scalar ` S ) ) ) ) |
27 |
26
|
biimpa |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> a e. ( Base ` ( Scalar ` S ) ) ) |
28 |
27
|
adantrr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> a e. ( Base ` ( Scalar ` S ) ) ) |
29 |
17
|
sselda |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ c e. U ) -> c e. ( Base ` S ) ) |
30 |
29
|
adantrl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> c e. ( Base ` S ) ) |
31 |
|
eqid |
|- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
32 |
|
eqid |
|- ( .s ` S ) = ( .s ` S ) |
33 |
|
eqid |
|- ( .s ` T ) = ( .s ` T ) |
34 |
21 31 10 32 33
|
lmhmlin |
|- ( ( F e. ( S LMHom T ) /\ a e. ( Base ` ( Scalar ` S ) ) /\ c e. ( Base ` S ) ) -> ( F ` ( a ( .s ` S ) c ) ) = ( a ( .s ` T ) ( F ` c ) ) ) |
35 |
20 28 30 34
|
syl3anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( F ` ( a ( .s ` S ) c ) ) = ( a ( .s ` T ) ( F ` c ) ) ) |
36 |
20 12 14
|
3syl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> F Fn ( Base ` S ) ) |
37 |
|
simplr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> U e. X ) |
38 |
37 16
|
syl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> U C_ ( Base ` S ) ) |
39 |
4
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> S e. LMod ) |
40 |
39
|
adantr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> S e. LMod ) |
41 |
|
simprr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> c e. U ) |
42 |
21 32 31 1
|
lssvscl |
|- ( ( ( S e. LMod /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ c e. U ) ) -> ( a ( .s ` S ) c ) e. U ) |
43 |
40 37 28 41 42
|
syl22anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( a ( .s ` S ) c ) e. U ) |
44 |
|
fnfvima |
|- ( ( F Fn ( Base ` S ) /\ U C_ ( Base ` S ) /\ ( a ( .s ` S ) c ) e. U ) -> ( F ` ( a ( .s ` S ) c ) ) e. ( F " U ) ) |
45 |
36 38 43 44
|
syl3anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( F ` ( a ( .s ` S ) c ) ) e. ( F " U ) ) |
46 |
35 45
|
eqeltrrd |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( a ( .s ` T ) ( F ` c ) ) e. ( F " U ) ) |
47 |
46
|
anassrs |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) /\ c e. U ) -> ( a ( .s ` T ) ( F ` c ) ) e. ( F " U ) ) |
48 |
|
oveq2 |
|- ( ( F ` c ) = b -> ( a ( .s ` T ) ( F ` c ) ) = ( a ( .s ` T ) b ) ) |
49 |
48
|
eleq1d |
|- ( ( F ` c ) = b -> ( ( a ( .s ` T ) ( F ` c ) ) e. ( F " U ) <-> ( a ( .s ` T ) b ) e. ( F " U ) ) ) |
50 |
47 49
|
syl5ibcom |
|- ( ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) /\ c e. U ) -> ( ( F ` c ) = b -> ( a ( .s ` T ) b ) e. ( F " U ) ) ) |
51 |
50
|
rexlimdva |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> ( E. c e. U ( F ` c ) = b -> ( a ( .s ` T ) b ) e. ( F " U ) ) ) |
52 |
19 51
|
sylbid |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> ( b e. ( F " U ) -> ( a ( .s ` T ) b ) e. ( F " U ) ) ) |
53 |
52
|
impr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. ( F " U ) ) ) -> ( a ( .s ` T ) b ) e. ( F " U ) ) |
54 |
53
|
ralrimivva |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> A. a e. ( Base ` ( Scalar ` T ) ) A. b e. ( F " U ) ( a ( .s ` T ) b ) e. ( F " U ) ) |
55 |
|
lmhmlmod2 |
|- ( F e. ( S LMHom T ) -> T e. LMod ) |
56 |
55
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> T e. LMod ) |
57 |
|
eqid |
|- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
58 |
22 57 11 33 2
|
islss4 |
|- ( T e. LMod -> ( ( F " U ) e. Y <-> ( ( F " U ) e. ( SubGrp ` T ) /\ A. a e. ( Base ` ( Scalar ` T ) ) A. b e. ( F " U ) ( a ( .s ` T ) b ) e. ( F " U ) ) ) ) |
59 |
56 58
|
syl |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( ( F " U ) e. Y <-> ( ( F " U ) e. ( SubGrp ` T ) /\ A. a e. ( Base ` ( Scalar ` T ) ) A. b e. ( F " U ) ( a ( .s ` T ) b ) e. ( F " U ) ) ) ) |
60 |
9 54 59
|
mpbir2and |
|- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( F " U ) e. Y ) |