Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmimasvsca.w |
|- W = ( F "s V ) |
2 |
|
lmhmimasvsca.b |
|- B = ( Base ` V ) |
3 |
|
lmhmimasvsca.c |
|- C = ( Base ` W ) |
4 |
|
lmhmimasvsca.x |
|- ( ph -> X e. K ) |
5 |
|
lmhmimasvsca.y |
|- ( ph -> Y e. B ) |
6 |
|
lmhmimasvsca.1 |
|- ( ph -> F : B -onto-> C ) |
7 |
|
lmhmimasvsca.f |
|- ( ph -> F e. ( V LMHom W ) ) |
8 |
|
lmhmimasvsca.2 |
|- .x. = ( .s ` V ) |
9 |
|
lmhmimasvsca.3 |
|- .X. = ( .s ` W ) |
10 |
|
lmhmimasvsca.k |
|- K = ( Base ` ( Scalar ` V ) ) |
11 |
1
|
a1i |
|- ( ph -> W = ( F "s V ) ) |
12 |
2
|
a1i |
|- ( ph -> B = ( Base ` V ) ) |
13 |
|
lmhmlmod1 |
|- ( F e. ( V LMHom W ) -> V e. LMod ) |
14 |
7 13
|
syl |
|- ( ph -> V e. LMod ) |
15 |
|
eqid |
|- ( Scalar ` V ) = ( Scalar ` V ) |
16 |
|
simpr |
|- ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> ( F ` a ) = ( F ` q ) ) |
17 |
16
|
oveq2d |
|- ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> ( p .X. ( F ` a ) ) = ( p .X. ( F ` q ) ) ) |
18 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> F e. ( V LMHom W ) ) |
19 |
|
simplr1 |
|- ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> p e. K ) |
20 |
|
simplr2 |
|- ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> a e. B ) |
21 |
15 10 2 8 9
|
lmhmlin |
|- ( ( F e. ( V LMHom W ) /\ p e. K /\ a e. B ) -> ( F ` ( p .x. a ) ) = ( p .X. ( F ` a ) ) ) |
22 |
18 19 20 21
|
syl3anc |
|- ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> ( F ` ( p .x. a ) ) = ( p .X. ( F ` a ) ) ) |
23 |
|
simplr3 |
|- ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> q e. B ) |
24 |
15 10 2 8 9
|
lmhmlin |
|- ( ( F e. ( V LMHom W ) /\ p e. K /\ q e. B ) -> ( F ` ( p .x. q ) ) = ( p .X. ( F ` q ) ) ) |
25 |
18 19 23 24
|
syl3anc |
|- ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> ( F ` ( p .x. q ) ) = ( p .X. ( F ` q ) ) ) |
26 |
17 22 25
|
3eqtr4d |
|- ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> ( F ` ( p .x. a ) ) = ( F ` ( p .x. q ) ) ) |
27 |
26
|
ex |
|- ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) -> ( ( F ` a ) = ( F ` q ) -> ( F ` ( p .x. a ) ) = ( F ` ( p .x. q ) ) ) ) |
28 |
11 12 6 14 15 10 8 9 27
|
imasvscaval |
|- ( ( ph /\ X e. K /\ Y e. B ) -> ( X .X. ( F ` Y ) ) = ( F ` ( X .x. Y ) ) ) |
29 |
4 5 28
|
mpd3an23 |
|- ( ph -> ( X .X. ( F ` Y ) ) = ( F ` ( X .x. Y ) ) ) |