Metamath Proof Explorer


Theorem lmhmimasvsca

Description: Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses lmhmimasvsca.w
|- W = ( F "s V )
lmhmimasvsca.b
|- B = ( Base ` V )
lmhmimasvsca.c
|- C = ( Base ` W )
lmhmimasvsca.x
|- ( ph -> X e. K )
lmhmimasvsca.y
|- ( ph -> Y e. B )
lmhmimasvsca.1
|- ( ph -> F : B -onto-> C )
lmhmimasvsca.f
|- ( ph -> F e. ( V LMHom W ) )
lmhmimasvsca.2
|- .x. = ( .s ` V )
lmhmimasvsca.3
|- .X. = ( .s ` W )
lmhmimasvsca.k
|- K = ( Base ` ( Scalar ` V ) )
Assertion lmhmimasvsca
|- ( ph -> ( X .X. ( F ` Y ) ) = ( F ` ( X .x. Y ) ) )

Proof

Step Hyp Ref Expression
1 lmhmimasvsca.w
 |-  W = ( F "s V )
2 lmhmimasvsca.b
 |-  B = ( Base ` V )
3 lmhmimasvsca.c
 |-  C = ( Base ` W )
4 lmhmimasvsca.x
 |-  ( ph -> X e. K )
5 lmhmimasvsca.y
 |-  ( ph -> Y e. B )
6 lmhmimasvsca.1
 |-  ( ph -> F : B -onto-> C )
7 lmhmimasvsca.f
 |-  ( ph -> F e. ( V LMHom W ) )
8 lmhmimasvsca.2
 |-  .x. = ( .s ` V )
9 lmhmimasvsca.3
 |-  .X. = ( .s ` W )
10 lmhmimasvsca.k
 |-  K = ( Base ` ( Scalar ` V ) )
11 1 a1i
 |-  ( ph -> W = ( F "s V ) )
12 2 a1i
 |-  ( ph -> B = ( Base ` V ) )
13 lmhmlmod1
 |-  ( F e. ( V LMHom W ) -> V e. LMod )
14 7 13 syl
 |-  ( ph -> V e. LMod )
15 eqid
 |-  ( Scalar ` V ) = ( Scalar ` V )
16 simpr
 |-  ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> ( F ` a ) = ( F ` q ) )
17 16 oveq2d
 |-  ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> ( p .X. ( F ` a ) ) = ( p .X. ( F ` q ) ) )
18 7 ad2antrr
 |-  ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> F e. ( V LMHom W ) )
19 simplr1
 |-  ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> p e. K )
20 simplr2
 |-  ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> a e. B )
21 15 10 2 8 9 lmhmlin
 |-  ( ( F e. ( V LMHom W ) /\ p e. K /\ a e. B ) -> ( F ` ( p .x. a ) ) = ( p .X. ( F ` a ) ) )
22 18 19 20 21 syl3anc
 |-  ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> ( F ` ( p .x. a ) ) = ( p .X. ( F ` a ) ) )
23 simplr3
 |-  ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> q e. B )
24 15 10 2 8 9 lmhmlin
 |-  ( ( F e. ( V LMHom W ) /\ p e. K /\ q e. B ) -> ( F ` ( p .x. q ) ) = ( p .X. ( F ` q ) ) )
25 18 19 23 24 syl3anc
 |-  ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> ( F ` ( p .x. q ) ) = ( p .X. ( F ` q ) ) )
26 17 22 25 3eqtr4d
 |-  ( ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) /\ ( F ` a ) = ( F ` q ) ) -> ( F ` ( p .x. a ) ) = ( F ` ( p .x. q ) ) )
27 26 ex
 |-  ( ( ph /\ ( p e. K /\ a e. B /\ q e. B ) ) -> ( ( F ` a ) = ( F ` q ) -> ( F ` ( p .x. a ) ) = ( F ` ( p .x. q ) ) ) )
28 11 12 6 14 15 10 8 9 27 imasvscaval
 |-  ( ( ph /\ X e. K /\ Y e. B ) -> ( X .X. ( F ` Y ) ) = ( F ` ( X .x. Y ) ) )
29 4 5 28 mpd3an23
 |-  ( ph -> ( X .X. ( F ` Y ) ) = ( F ` ( X .x. Y ) ) )