Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmlem.k |
|- K = ( Scalar ` S ) |
2 |
|
lmhmlem.l |
|- L = ( Scalar ` T ) |
3 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
4 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
5 |
|
eqid |
|- ( .s ` S ) = ( .s ` S ) |
6 |
|
eqid |
|- ( .s ` T ) = ( .s ` T ) |
7 |
1 2 3 4 5 6
|
islmhm |
|- ( F e. ( S LMHom T ) <-> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K /\ A. a e. ( Base ` K ) A. b e. ( Base ` S ) ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) ) ) |
8 |
|
3simpa |
|- ( ( F e. ( S GrpHom T ) /\ L = K /\ A. a e. ( Base ` K ) A. b e. ( Base ` S ) ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) -> ( F e. ( S GrpHom T ) /\ L = K ) ) |
9 |
8
|
anim2i |
|- ( ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K /\ A. a e. ( Base ` K ) A. b e. ( Base ` S ) ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) ) -> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K ) ) ) |
10 |
7 9
|
sylbi |
|- ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K ) ) ) |