| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmhmlin.k |  |-  K = ( Scalar ` S ) | 
						
							| 2 |  | lmhmlin.b |  |-  B = ( Base ` K ) | 
						
							| 3 |  | lmhmlin.e |  |-  E = ( Base ` S ) | 
						
							| 4 |  | lmhmlin.m |  |-  .x. = ( .s ` S ) | 
						
							| 5 |  | lmhmlin.n |  |-  .X. = ( .s ` T ) | 
						
							| 6 |  | eqid |  |-  ( Scalar ` T ) = ( Scalar ` T ) | 
						
							| 7 | 1 6 2 3 4 5 | islmhm |  |-  ( F e. ( S LMHom T ) <-> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ ( Scalar ` T ) = K /\ A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) ) ) ) | 
						
							| 8 | 7 | simprbi |  |-  ( F e. ( S LMHom T ) -> ( F e. ( S GrpHom T ) /\ ( Scalar ` T ) = K /\ A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) ) ) | 
						
							| 9 | 8 | simp3d |  |-  ( F e. ( S LMHom T ) -> A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) ) | 
						
							| 10 |  | fvoveq1 |  |-  ( a = X -> ( F ` ( a .x. b ) ) = ( F ` ( X .x. b ) ) ) | 
						
							| 11 |  | oveq1 |  |-  ( a = X -> ( a .X. ( F ` b ) ) = ( X .X. ( F ` b ) ) ) | 
						
							| 12 | 10 11 | eqeq12d |  |-  ( a = X -> ( ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) <-> ( F ` ( X .x. b ) ) = ( X .X. ( F ` b ) ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( b = Y -> ( X .x. b ) = ( X .x. Y ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( b = Y -> ( F ` ( X .x. b ) ) = ( F ` ( X .x. Y ) ) ) | 
						
							| 15 |  | fveq2 |  |-  ( b = Y -> ( F ` b ) = ( F ` Y ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( b = Y -> ( X .X. ( F ` b ) ) = ( X .X. ( F ` Y ) ) ) | 
						
							| 17 | 14 16 | eqeq12d |  |-  ( b = Y -> ( ( F ` ( X .x. b ) ) = ( X .X. ( F ` b ) ) <-> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) ) | 
						
							| 18 | 12 17 | rspc2v |  |-  ( ( X e. B /\ Y e. E ) -> ( A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) ) | 
						
							| 19 | 9 18 | syl5com |  |-  ( F e. ( S LMHom T ) -> ( ( X e. B /\ Y e. E ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) ) | 
						
							| 20 | 19 | 3impib |  |-  ( ( F e. ( S LMHom T ) /\ X e. B /\ Y e. E ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) |