Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmlin.k |
|- K = ( Scalar ` S ) |
2 |
|
lmhmlin.b |
|- B = ( Base ` K ) |
3 |
|
lmhmlin.e |
|- E = ( Base ` S ) |
4 |
|
lmhmlin.m |
|- .x. = ( .s ` S ) |
5 |
|
lmhmlin.n |
|- .X. = ( .s ` T ) |
6 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
7 |
1 6 2 3 4 5
|
islmhm |
|- ( F e. ( S LMHom T ) <-> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ ( Scalar ` T ) = K /\ A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) ) ) ) |
8 |
7
|
simprbi |
|- ( F e. ( S LMHom T ) -> ( F e. ( S GrpHom T ) /\ ( Scalar ` T ) = K /\ A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) ) ) |
9 |
8
|
simp3d |
|- ( F e. ( S LMHom T ) -> A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) ) |
10 |
|
fvoveq1 |
|- ( a = X -> ( F ` ( a .x. b ) ) = ( F ` ( X .x. b ) ) ) |
11 |
|
oveq1 |
|- ( a = X -> ( a .X. ( F ` b ) ) = ( X .X. ( F ` b ) ) ) |
12 |
10 11
|
eqeq12d |
|- ( a = X -> ( ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) <-> ( F ` ( X .x. b ) ) = ( X .X. ( F ` b ) ) ) ) |
13 |
|
oveq2 |
|- ( b = Y -> ( X .x. b ) = ( X .x. Y ) ) |
14 |
13
|
fveq2d |
|- ( b = Y -> ( F ` ( X .x. b ) ) = ( F ` ( X .x. Y ) ) ) |
15 |
|
fveq2 |
|- ( b = Y -> ( F ` b ) = ( F ` Y ) ) |
16 |
15
|
oveq2d |
|- ( b = Y -> ( X .X. ( F ` b ) ) = ( X .X. ( F ` Y ) ) ) |
17 |
14 16
|
eqeq12d |
|- ( b = Y -> ( ( F ` ( X .x. b ) ) = ( X .X. ( F ` b ) ) <-> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) ) |
18 |
12 17
|
rspc2v |
|- ( ( X e. B /\ Y e. E ) -> ( A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) ) |
19 |
9 18
|
syl5com |
|- ( F e. ( S LMHom T ) -> ( ( X e. B /\ Y e. E ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) ) |
20 |
19
|
3impib |
|- ( ( F e. ( S LMHom T ) /\ X e. B /\ Y e. E ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) |