Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmfgsplit.z |
|- .0. = ( 0g ` T ) |
2 |
|
lmhmfgsplit.k |
|- K = ( `' F " { .0. } ) |
3 |
|
lmhmfgsplit.u |
|- U = ( S |`s K ) |
4 |
|
lmhmfgsplit.v |
|- V = ( T |`s ran F ) |
5 |
|
lmhmlmod1 |
|- ( F e. ( S LMHom T ) -> S e. LMod ) |
6 |
5
|
3ad2ant1 |
|- ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) -> S e. LMod ) |
7 |
|
eqid |
|- ( LSubSp ` S ) = ( LSubSp ` S ) |
8 |
|
eqid |
|- ( S |`s a ) = ( S |`s a ) |
9 |
7 8
|
reslmhm |
|- ( ( F e. ( S LMHom T ) /\ a e. ( LSubSp ` S ) ) -> ( F |` a ) e. ( ( S |`s a ) LMHom T ) ) |
10 |
9
|
3ad2antl1 |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( F |` a ) e. ( ( S |`s a ) LMHom T ) ) |
11 |
|
cnvresima |
|- ( `' ( F |` a ) " { .0. } ) = ( ( `' F " { .0. } ) i^i a ) |
12 |
2
|
eqcomi |
|- ( `' F " { .0. } ) = K |
13 |
12
|
ineq1i |
|- ( ( `' F " { .0. } ) i^i a ) = ( K i^i a ) |
14 |
|
incom |
|- ( K i^i a ) = ( a i^i K ) |
15 |
11 13 14
|
3eqtri |
|- ( `' ( F |` a ) " { .0. } ) = ( a i^i K ) |
16 |
15
|
oveq2i |
|- ( ( S |`s a ) |`s ( `' ( F |` a ) " { .0. } ) ) = ( ( S |`s a ) |`s ( a i^i K ) ) |
17 |
|
vex |
|- a e. _V |
18 |
|
inss1 |
|- ( a i^i K ) C_ a |
19 |
|
ressabs |
|- ( ( a e. _V /\ ( a i^i K ) C_ a ) -> ( ( S |`s a ) |`s ( a i^i K ) ) = ( S |`s ( a i^i K ) ) ) |
20 |
17 18 19
|
mp2an |
|- ( ( S |`s a ) |`s ( a i^i K ) ) = ( S |`s ( a i^i K ) ) |
21 |
3
|
oveq1i |
|- ( U |`s ( a i^i K ) ) = ( ( S |`s K ) |`s ( a i^i K ) ) |
22 |
|
simpl1 |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> F e. ( S LMHom T ) ) |
23 |
|
cnvexg |
|- ( F e. ( S LMHom T ) -> `' F e. _V ) |
24 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " { .0. } ) e. _V ) |
25 |
23 24
|
syl |
|- ( F e. ( S LMHom T ) -> ( `' F " { .0. } ) e. _V ) |
26 |
2 25
|
eqeltrid |
|- ( F e. ( S LMHom T ) -> K e. _V ) |
27 |
22 26
|
syl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> K e. _V ) |
28 |
|
inss2 |
|- ( a i^i K ) C_ K |
29 |
|
ressabs |
|- ( ( K e. _V /\ ( a i^i K ) C_ K ) -> ( ( S |`s K ) |`s ( a i^i K ) ) = ( S |`s ( a i^i K ) ) ) |
30 |
27 28 29
|
sylancl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( ( S |`s K ) |`s ( a i^i K ) ) = ( S |`s ( a i^i K ) ) ) |
31 |
21 30
|
eqtrid |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( U |`s ( a i^i K ) ) = ( S |`s ( a i^i K ) ) ) |
32 |
20 31
|
eqtr4id |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( ( S |`s a ) |`s ( a i^i K ) ) = ( U |`s ( a i^i K ) ) ) |
33 |
16 32
|
eqtrid |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( ( S |`s a ) |`s ( `' ( F |` a ) " { .0. } ) ) = ( U |`s ( a i^i K ) ) ) |
34 |
|
simpl2 |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> U e. LNoeM ) |
35 |
6
|
adantr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> S e. LMod ) |
36 |
|
simpr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> a e. ( LSubSp ` S ) ) |
37 |
2 1 7
|
lmhmkerlss |
|- ( F e. ( S LMHom T ) -> K e. ( LSubSp ` S ) ) |
38 |
22 37
|
syl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> K e. ( LSubSp ` S ) ) |
39 |
7
|
lssincl |
|- ( ( S e. LMod /\ a e. ( LSubSp ` S ) /\ K e. ( LSubSp ` S ) ) -> ( a i^i K ) e. ( LSubSp ` S ) ) |
40 |
35 36 38 39
|
syl3anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( a i^i K ) e. ( LSubSp ` S ) ) |
41 |
28
|
a1i |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( a i^i K ) C_ K ) |
42 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
43 |
3 7 42
|
lsslss |
|- ( ( S e. LMod /\ K e. ( LSubSp ` S ) ) -> ( ( a i^i K ) e. ( LSubSp ` U ) <-> ( ( a i^i K ) e. ( LSubSp ` S ) /\ ( a i^i K ) C_ K ) ) ) |
44 |
35 38 43
|
syl2anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( ( a i^i K ) e. ( LSubSp ` U ) <-> ( ( a i^i K ) e. ( LSubSp ` S ) /\ ( a i^i K ) C_ K ) ) ) |
45 |
40 41 44
|
mpbir2and |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( a i^i K ) e. ( LSubSp ` U ) ) |
46 |
|
eqid |
|- ( U |`s ( a i^i K ) ) = ( U |`s ( a i^i K ) ) |
47 |
42 46
|
lnmlssfg |
|- ( ( U e. LNoeM /\ ( a i^i K ) e. ( LSubSp ` U ) ) -> ( U |`s ( a i^i K ) ) e. LFinGen ) |
48 |
34 45 47
|
syl2anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( U |`s ( a i^i K ) ) e. LFinGen ) |
49 |
33 48
|
eqeltrd |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( ( S |`s a ) |`s ( `' ( F |` a ) " { .0. } ) ) e. LFinGen ) |
50 |
|
incom |
|- ( ran F i^i ran ( F |` a ) ) = ( ran ( F |` a ) i^i ran F ) |
51 |
|
resss |
|- ( F |` a ) C_ F |
52 |
|
rnss |
|- ( ( F |` a ) C_ F -> ran ( F |` a ) C_ ran F ) |
53 |
51 52
|
ax-mp |
|- ran ( F |` a ) C_ ran F |
54 |
|
df-ss |
|- ( ran ( F |` a ) C_ ran F <-> ( ran ( F |` a ) i^i ran F ) = ran ( F |` a ) ) |
55 |
53 54
|
mpbi |
|- ( ran ( F |` a ) i^i ran F ) = ran ( F |` a ) |
56 |
50 55
|
eqtr2i |
|- ran ( F |` a ) = ( ran F i^i ran ( F |` a ) ) |
57 |
56
|
oveq2i |
|- ( T |`s ran ( F |` a ) ) = ( T |`s ( ran F i^i ran ( F |` a ) ) ) |
58 |
4
|
oveq1i |
|- ( V |`s ran ( F |` a ) ) = ( ( T |`s ran F ) |`s ran ( F |` a ) ) |
59 |
|
rnexg |
|- ( F e. ( S LMHom T ) -> ran F e. _V ) |
60 |
|
resexg |
|- ( F e. ( S LMHom T ) -> ( F |` a ) e. _V ) |
61 |
|
rnexg |
|- ( ( F |` a ) e. _V -> ran ( F |` a ) e. _V ) |
62 |
60 61
|
syl |
|- ( F e. ( S LMHom T ) -> ran ( F |` a ) e. _V ) |
63 |
|
ressress |
|- ( ( ran F e. _V /\ ran ( F |` a ) e. _V ) -> ( ( T |`s ran F ) |`s ran ( F |` a ) ) = ( T |`s ( ran F i^i ran ( F |` a ) ) ) ) |
64 |
59 62 63
|
syl2anc |
|- ( F e. ( S LMHom T ) -> ( ( T |`s ran F ) |`s ran ( F |` a ) ) = ( T |`s ( ran F i^i ran ( F |` a ) ) ) ) |
65 |
58 64
|
eqtrid |
|- ( F e. ( S LMHom T ) -> ( V |`s ran ( F |` a ) ) = ( T |`s ( ran F i^i ran ( F |` a ) ) ) ) |
66 |
57 65
|
eqtr4id |
|- ( F e. ( S LMHom T ) -> ( T |`s ran ( F |` a ) ) = ( V |`s ran ( F |` a ) ) ) |
67 |
22 66
|
syl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( T |`s ran ( F |` a ) ) = ( V |`s ran ( F |` a ) ) ) |
68 |
|
simpl3 |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> V e. LNoeM ) |
69 |
|
lmhmrnlss |
|- ( ( F |` a ) e. ( ( S |`s a ) LMHom T ) -> ran ( F |` a ) e. ( LSubSp ` T ) ) |
70 |
10 69
|
syl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ran ( F |` a ) e. ( LSubSp ` T ) ) |
71 |
53
|
a1i |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ran ( F |` a ) C_ ran F ) |
72 |
|
lmhmlmod2 |
|- ( F e. ( S LMHom T ) -> T e. LMod ) |
73 |
22 72
|
syl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> T e. LMod ) |
74 |
|
lmhmrnlss |
|- ( F e. ( S LMHom T ) -> ran F e. ( LSubSp ` T ) ) |
75 |
22 74
|
syl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ran F e. ( LSubSp ` T ) ) |
76 |
|
eqid |
|- ( LSubSp ` T ) = ( LSubSp ` T ) |
77 |
|
eqid |
|- ( LSubSp ` V ) = ( LSubSp ` V ) |
78 |
4 76 77
|
lsslss |
|- ( ( T e. LMod /\ ran F e. ( LSubSp ` T ) ) -> ( ran ( F |` a ) e. ( LSubSp ` V ) <-> ( ran ( F |` a ) e. ( LSubSp ` T ) /\ ran ( F |` a ) C_ ran F ) ) ) |
79 |
73 75 78
|
syl2anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( ran ( F |` a ) e. ( LSubSp ` V ) <-> ( ran ( F |` a ) e. ( LSubSp ` T ) /\ ran ( F |` a ) C_ ran F ) ) ) |
80 |
70 71 79
|
mpbir2and |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ran ( F |` a ) e. ( LSubSp ` V ) ) |
81 |
|
eqid |
|- ( V |`s ran ( F |` a ) ) = ( V |`s ran ( F |` a ) ) |
82 |
77 81
|
lnmlssfg |
|- ( ( V e. LNoeM /\ ran ( F |` a ) e. ( LSubSp ` V ) ) -> ( V |`s ran ( F |` a ) ) e. LFinGen ) |
83 |
68 80 82
|
syl2anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( V |`s ran ( F |` a ) ) e. LFinGen ) |
84 |
67 83
|
eqeltrd |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( T |`s ran ( F |` a ) ) e. LFinGen ) |
85 |
|
eqid |
|- ( `' ( F |` a ) " { .0. } ) = ( `' ( F |` a ) " { .0. } ) |
86 |
|
eqid |
|- ( ( S |`s a ) |`s ( `' ( F |` a ) " { .0. } ) ) = ( ( S |`s a ) |`s ( `' ( F |` a ) " { .0. } ) ) |
87 |
|
eqid |
|- ( T |`s ran ( F |` a ) ) = ( T |`s ran ( F |` a ) ) |
88 |
1 85 86 87
|
lmhmfgsplit |
|- ( ( ( F |` a ) e. ( ( S |`s a ) LMHom T ) /\ ( ( S |`s a ) |`s ( `' ( F |` a ) " { .0. } ) ) e. LFinGen /\ ( T |`s ran ( F |` a ) ) e. LFinGen ) -> ( S |`s a ) e. LFinGen ) |
89 |
10 49 84 88
|
syl3anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) /\ a e. ( LSubSp ` S ) ) -> ( S |`s a ) e. LFinGen ) |
90 |
89
|
ralrimiva |
|- ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) -> A. a e. ( LSubSp ` S ) ( S |`s a ) e. LFinGen ) |
91 |
7
|
islnm |
|- ( S e. LNoeM <-> ( S e. LMod /\ A. a e. ( LSubSp ` S ) ( S |`s a ) e. LFinGen ) ) |
92 |
6 90 91
|
sylanbrc |
|- ( ( F e. ( S LMHom T ) /\ U e. LNoeM /\ V e. LNoeM ) -> S e. LNoeM ) |