| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmhmlsp.v |  |-  V = ( Base ` S ) | 
						
							| 2 |  | lmhmlsp.k |  |-  K = ( LSpan ` S ) | 
						
							| 3 |  | lmhmlsp.l |  |-  L = ( LSpan ` T ) | 
						
							| 4 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 5 | 1 4 | lmhmf |  |-  ( F e. ( S LMHom T ) -> F : V --> ( Base ` T ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> F : V --> ( Base ` T ) ) | 
						
							| 7 | 6 | ffund |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> Fun F ) | 
						
							| 8 |  | lmhmlmod1 |  |-  ( F e. ( S LMHom T ) -> S e. LMod ) | 
						
							| 9 | 8 | adantr |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> S e. LMod ) | 
						
							| 10 |  | lmhmlmod2 |  |-  ( F e. ( S LMHom T ) -> T e. LMod ) | 
						
							| 11 | 10 | adantr |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> T e. LMod ) | 
						
							| 12 |  | imassrn |  |-  ( F " U ) C_ ran F | 
						
							| 13 | 6 | frnd |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ran F C_ ( Base ` T ) ) | 
						
							| 14 | 12 13 | sstrid |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " U ) C_ ( Base ` T ) ) | 
						
							| 15 |  | eqid |  |-  ( LSubSp ` T ) = ( LSubSp ` T ) | 
						
							| 16 | 4 15 3 | lspcl |  |-  ( ( T e. LMod /\ ( F " U ) C_ ( Base ` T ) ) -> ( L ` ( F " U ) ) e. ( LSubSp ` T ) ) | 
						
							| 17 | 11 14 16 | syl2anc |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( L ` ( F " U ) ) e. ( LSubSp ` T ) ) | 
						
							| 18 |  | eqid |  |-  ( LSubSp ` S ) = ( LSubSp ` S ) | 
						
							| 19 | 18 15 | lmhmpreima |  |-  ( ( F e. ( S LMHom T ) /\ ( L ` ( F " U ) ) e. ( LSubSp ` T ) ) -> ( `' F " ( L ` ( F " U ) ) ) e. ( LSubSp ` S ) ) | 
						
							| 20 | 17 19 | syldan |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( `' F " ( L ` ( F " U ) ) ) e. ( LSubSp ` S ) ) | 
						
							| 21 |  | incom |  |-  ( dom F i^i U ) = ( U i^i dom F ) | 
						
							| 22 |  | simpr |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ V ) | 
						
							| 23 | 6 | fdmd |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> dom F = V ) | 
						
							| 24 | 22 23 | sseqtrrd |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ dom F ) | 
						
							| 25 |  | dfss2 |  |-  ( U C_ dom F <-> ( U i^i dom F ) = U ) | 
						
							| 26 | 24 25 | sylib |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( U i^i dom F ) = U ) | 
						
							| 27 | 21 26 | eqtr2id |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U = ( dom F i^i U ) ) | 
						
							| 28 |  | dminss |  |-  ( dom F i^i U ) C_ ( `' F " ( F " U ) ) | 
						
							| 29 | 27 28 | eqsstrdi |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ ( `' F " ( F " U ) ) ) | 
						
							| 30 | 4 3 | lspssid |  |-  ( ( T e. LMod /\ ( F " U ) C_ ( Base ` T ) ) -> ( F " U ) C_ ( L ` ( F " U ) ) ) | 
						
							| 31 | 11 14 30 | syl2anc |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " U ) C_ ( L ` ( F " U ) ) ) | 
						
							| 32 |  | imass2 |  |-  ( ( F " U ) C_ ( L ` ( F " U ) ) -> ( `' F " ( F " U ) ) C_ ( `' F " ( L ` ( F " U ) ) ) ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( `' F " ( F " U ) ) C_ ( `' F " ( L ` ( F " U ) ) ) ) | 
						
							| 34 | 29 33 | sstrd |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ ( `' F " ( L ` ( F " U ) ) ) ) | 
						
							| 35 | 18 2 | lspssp |  |-  ( ( S e. LMod /\ ( `' F " ( L ` ( F " U ) ) ) e. ( LSubSp ` S ) /\ U C_ ( `' F " ( L ` ( F " U ) ) ) ) -> ( K ` U ) C_ ( `' F " ( L ` ( F " U ) ) ) ) | 
						
							| 36 | 9 20 34 35 | syl3anc |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( K ` U ) C_ ( `' F " ( L ` ( F " U ) ) ) ) | 
						
							| 37 |  | funimass2 |  |-  ( ( Fun F /\ ( K ` U ) C_ ( `' F " ( L ` ( F " U ) ) ) ) -> ( F " ( K ` U ) ) C_ ( L ` ( F " U ) ) ) | 
						
							| 38 | 7 36 37 | syl2anc |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " ( K ` U ) ) C_ ( L ` ( F " U ) ) ) | 
						
							| 39 | 1 18 2 | lspcl |  |-  ( ( S e. LMod /\ U C_ V ) -> ( K ` U ) e. ( LSubSp ` S ) ) | 
						
							| 40 | 9 22 39 | syl2anc |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( K ` U ) e. ( LSubSp ` S ) ) | 
						
							| 41 | 18 15 | lmhmima |  |-  ( ( F e. ( S LMHom T ) /\ ( K ` U ) e. ( LSubSp ` S ) ) -> ( F " ( K ` U ) ) e. ( LSubSp ` T ) ) | 
						
							| 42 | 40 41 | syldan |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " ( K ` U ) ) e. ( LSubSp ` T ) ) | 
						
							| 43 | 1 2 | lspssid |  |-  ( ( S e. LMod /\ U C_ V ) -> U C_ ( K ` U ) ) | 
						
							| 44 | 9 22 43 | syl2anc |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ ( K ` U ) ) | 
						
							| 45 |  | imass2 |  |-  ( U C_ ( K ` U ) -> ( F " U ) C_ ( F " ( K ` U ) ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " U ) C_ ( F " ( K ` U ) ) ) | 
						
							| 47 | 15 3 | lspssp |  |-  ( ( T e. LMod /\ ( F " ( K ` U ) ) e. ( LSubSp ` T ) /\ ( F " U ) C_ ( F " ( K ` U ) ) ) -> ( L ` ( F " U ) ) C_ ( F " ( K ` U ) ) ) | 
						
							| 48 | 11 42 46 47 | syl3anc |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( L ` ( F " U ) ) C_ ( F " ( K ` U ) ) ) | 
						
							| 49 | 38 48 | eqssd |  |-  ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " ( K ` U ) ) = ( L ` ( F " U ) ) ) |