Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmplusg.p |
|- .+ = ( +g ` N ) |
2 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
3 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
4 |
|
eqid |
|- ( .s ` N ) = ( .s ` N ) |
5 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
6 |
|
eqid |
|- ( Scalar ` N ) = ( Scalar ` N ) |
7 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
8 |
|
lmhmlmod1 |
|- ( F e. ( M LMHom N ) -> M e. LMod ) |
9 |
8
|
adantr |
|- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> M e. LMod ) |
10 |
|
lmhmlmod2 |
|- ( F e. ( M LMHom N ) -> N e. LMod ) |
11 |
10
|
adantr |
|- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> N e. LMod ) |
12 |
5 6
|
lmhmsca |
|- ( F e. ( M LMHom N ) -> ( Scalar ` N ) = ( Scalar ` M ) ) |
13 |
12
|
adantr |
|- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> ( Scalar ` N ) = ( Scalar ` M ) ) |
14 |
|
lmodabl |
|- ( N e. LMod -> N e. Abel ) |
15 |
11 14
|
syl |
|- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> N e. Abel ) |
16 |
|
lmghm |
|- ( F e. ( M LMHom N ) -> F e. ( M GrpHom N ) ) |
17 |
16
|
adantr |
|- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> F e. ( M GrpHom N ) ) |
18 |
|
lmghm |
|- ( G e. ( M LMHom N ) -> G e. ( M GrpHom N ) ) |
19 |
18
|
adantl |
|- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> G e. ( M GrpHom N ) ) |
20 |
1
|
ghmplusg |
|- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> ( F oF .+ G ) e. ( M GrpHom N ) ) |
21 |
15 17 19 20
|
syl3anc |
|- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> ( F oF .+ G ) e. ( M GrpHom N ) ) |
22 |
|
simpll |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> F e. ( M LMHom N ) ) |
23 |
|
simprl |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> x e. ( Base ` ( Scalar ` M ) ) ) |
24 |
|
simprr |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> y e. ( Base ` M ) ) |
25 |
5 7 2 3 4
|
lmhmlin |
|- ( ( F e. ( M LMHom N ) /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( F ` y ) ) ) |
26 |
22 23 24 25
|
syl3anc |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( F ` y ) ) ) |
27 |
|
simplr |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> G e. ( M LMHom N ) ) |
28 |
5 7 2 3 4
|
lmhmlin |
|- ( ( G e. ( M LMHom N ) /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( G ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( G ` y ) ) ) |
29 |
27 23 24 28
|
syl3anc |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( G ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( G ` y ) ) ) |
30 |
26 29
|
oveq12d |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F ` ( x ( .s ` M ) y ) ) .+ ( G ` ( x ( .s ` M ) y ) ) ) = ( ( x ( .s ` N ) ( F ` y ) ) .+ ( x ( .s ` N ) ( G ` y ) ) ) ) |
31 |
10
|
ad2antrr |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> N e. LMod ) |
32 |
12
|
fveq2d |
|- ( F e. ( M LMHom N ) -> ( Base ` ( Scalar ` N ) ) = ( Base ` ( Scalar ` M ) ) ) |
33 |
32
|
ad2antrr |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( Base ` ( Scalar ` N ) ) = ( Base ` ( Scalar ` M ) ) ) |
34 |
23 33
|
eleqtrrd |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> x e. ( Base ` ( Scalar ` N ) ) ) |
35 |
|
eqid |
|- ( Base ` N ) = ( Base ` N ) |
36 |
2 35
|
lmhmf |
|- ( F e. ( M LMHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
37 |
36
|
ad2antrr |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
38 |
37 24
|
ffvelrnd |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( F ` y ) e. ( Base ` N ) ) |
39 |
2 35
|
lmhmf |
|- ( G e. ( M LMHom N ) -> G : ( Base ` M ) --> ( Base ` N ) ) |
40 |
39
|
ad2antlr |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> G : ( Base ` M ) --> ( Base ` N ) ) |
41 |
40 24
|
ffvelrnd |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( G ` y ) e. ( Base ` N ) ) |
42 |
|
eqid |
|- ( Base ` ( Scalar ` N ) ) = ( Base ` ( Scalar ` N ) ) |
43 |
35 1 6 4 42
|
lmodvsdi |
|- ( ( N e. LMod /\ ( x e. ( Base ` ( Scalar ` N ) ) /\ ( F ` y ) e. ( Base ` N ) /\ ( G ` y ) e. ( Base ` N ) ) ) -> ( x ( .s ` N ) ( ( F ` y ) .+ ( G ` y ) ) ) = ( ( x ( .s ` N ) ( F ` y ) ) .+ ( x ( .s ` N ) ( G ` y ) ) ) ) |
44 |
31 34 38 41 43
|
syl13anc |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( x ( .s ` N ) ( ( F ` y ) .+ ( G ` y ) ) ) = ( ( x ( .s ` N ) ( F ` y ) ) .+ ( x ( .s ` N ) ( G ` y ) ) ) ) |
45 |
30 44
|
eqtr4d |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F ` ( x ( .s ` M ) y ) ) .+ ( G ` ( x ( .s ` M ) y ) ) ) = ( x ( .s ` N ) ( ( F ` y ) .+ ( G ` y ) ) ) ) |
46 |
37
|
ffnd |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> F Fn ( Base ` M ) ) |
47 |
40
|
ffnd |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> G Fn ( Base ` M ) ) |
48 |
|
fvexd |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( Base ` M ) e. _V ) |
49 |
8
|
ad2antrr |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> M e. LMod ) |
50 |
2 5 3 7
|
lmodvscl |
|- ( ( M e. LMod /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( x ( .s ` M ) y ) e. ( Base ` M ) ) |
51 |
49 23 24 50
|
syl3anc |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( x ( .s ` M ) y ) e. ( Base ` M ) ) |
52 |
|
fnfvof |
|- ( ( ( F Fn ( Base ` M ) /\ G Fn ( Base ` M ) ) /\ ( ( Base ` M ) e. _V /\ ( x ( .s ` M ) y ) e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` ( x ( .s ` M ) y ) ) = ( ( F ` ( x ( .s ` M ) y ) ) .+ ( G ` ( x ( .s ` M ) y ) ) ) ) |
53 |
46 47 48 51 52
|
syl22anc |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` ( x ( .s ` M ) y ) ) = ( ( F ` ( x ( .s ` M ) y ) ) .+ ( G ` ( x ( .s ` M ) y ) ) ) ) |
54 |
|
fnfvof |
|- ( ( ( F Fn ( Base ` M ) /\ G Fn ( Base ` M ) ) /\ ( ( Base ` M ) e. _V /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` y ) = ( ( F ` y ) .+ ( G ` y ) ) ) |
55 |
46 47 48 24 54
|
syl22anc |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` y ) = ( ( F ` y ) .+ ( G ` y ) ) ) |
56 |
55
|
oveq2d |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( x ( .s ` N ) ( ( F oF .+ G ) ` y ) ) = ( x ( .s ` N ) ( ( F ` y ) .+ ( G ` y ) ) ) ) |
57 |
45 53 56
|
3eqtr4d |
|- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( ( F oF .+ G ) ` y ) ) ) |
58 |
2 3 4 5 6 7 9 11 13 21 57
|
islmhmd |
|- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> ( F oF .+ G ) e. ( M LMHom N ) ) |