| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmima.x |
|- X = ( LSubSp ` S ) |
| 2 |
|
lmhmima.y |
|- Y = ( LSubSp ` T ) |
| 3 |
|
lmghm |
|- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
| 4 |
|
lmhmlmod2 |
|- ( F e. ( S LMHom T ) -> T e. LMod ) |
| 5 |
2
|
lsssubg |
|- ( ( T e. LMod /\ U e. Y ) -> U e. ( SubGrp ` T ) ) |
| 6 |
4 5
|
sylan |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> U e. ( SubGrp ` T ) ) |
| 7 |
|
ghmpreima |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` T ) ) -> ( `' F " U ) e. ( SubGrp ` S ) ) |
| 8 |
3 6 7
|
syl2an2r |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( `' F " U ) e. ( SubGrp ` S ) ) |
| 9 |
|
lmhmlmod1 |
|- ( F e. ( S LMHom T ) -> S e. LMod ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> S e. LMod ) |
| 11 |
|
simprl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> a e. ( Base ` ( Scalar ` S ) ) ) |
| 12 |
|
cnvimass |
|- ( `' F " U ) C_ dom F |
| 13 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 14 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 15 |
13 14
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 16 |
15
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 17 |
12 16
|
fssdm |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( `' F " U ) C_ ( Base ` S ) ) |
| 18 |
17
|
sselda |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ b e. ( `' F " U ) ) -> b e. ( Base ` S ) ) |
| 19 |
18
|
adantrl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> b e. ( Base ` S ) ) |
| 20 |
|
eqid |
|- ( Scalar ` S ) = ( Scalar ` S ) |
| 21 |
|
eqid |
|- ( .s ` S ) = ( .s ` S ) |
| 22 |
|
eqid |
|- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
| 23 |
13 20 21 22
|
lmodvscl |
|- ( ( S e. LMod /\ a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` S ) ) -> ( a ( .s ` S ) b ) e. ( Base ` S ) ) |
| 24 |
10 11 19 23
|
syl3anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( a ( .s ` S ) b ) e. ( Base ` S ) ) |
| 25 |
|
simpll |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> F e. ( S LMHom T ) ) |
| 26 |
|
eqid |
|- ( .s ` T ) = ( .s ` T ) |
| 27 |
20 22 13 21 26
|
lmhmlin |
|- ( ( F e. ( S LMHom T ) /\ a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` S ) ) -> ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
| 28 |
25 11 19 27
|
syl3anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
| 29 |
4
|
ad2antrr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> T e. LMod ) |
| 30 |
|
simplr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> U e. Y ) |
| 31 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
| 32 |
20 31
|
lmhmsca |
|- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
| 33 |
32
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
| 34 |
33
|
fveq2d |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` S ) ) ) |
| 35 |
34
|
eleq2d |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( a e. ( Base ` ( Scalar ` T ) ) <-> a e. ( Base ` ( Scalar ` S ) ) ) ) |
| 36 |
35
|
biimpar |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ a e. ( Base ` ( Scalar ` S ) ) ) -> a e. ( Base ` ( Scalar ` T ) ) ) |
| 37 |
36
|
adantrr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> a e. ( Base ` ( Scalar ` T ) ) ) |
| 38 |
16
|
ffund |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> Fun F ) |
| 39 |
|
simprr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> b e. ( `' F " U ) ) |
| 40 |
|
fvimacnvi |
|- ( ( Fun F /\ b e. ( `' F " U ) ) -> ( F ` b ) e. U ) |
| 41 |
38 39 40
|
syl2an2r |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( F ` b ) e. U ) |
| 42 |
|
eqid |
|- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
| 43 |
31 26 42 2
|
lssvscl |
|- ( ( ( T e. LMod /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ ( F ` b ) e. U ) ) -> ( a ( .s ` T ) ( F ` b ) ) e. U ) |
| 44 |
29 30 37 41 43
|
syl22anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( a ( .s ` T ) ( F ` b ) ) e. U ) |
| 45 |
28 44
|
eqeltrd |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( F ` ( a ( .s ` S ) b ) ) e. U ) |
| 46 |
|
ffn |
|- ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) |
| 47 |
|
elpreima |
|- ( F Fn ( Base ` S ) -> ( ( a ( .s ` S ) b ) e. ( `' F " U ) <-> ( ( a ( .s ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( .s ` S ) b ) ) e. U ) ) ) |
| 48 |
16 46 47
|
3syl |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( ( a ( .s ` S ) b ) e. ( `' F " U ) <-> ( ( a ( .s ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( .s ` S ) b ) ) e. U ) ) ) |
| 49 |
48
|
adantr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( ( a ( .s ` S ) b ) e. ( `' F " U ) <-> ( ( a ( .s ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( .s ` S ) b ) ) e. U ) ) ) |
| 50 |
24 45 49
|
mpbir2and |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( a ( .s ` S ) b ) e. ( `' F " U ) ) |
| 51 |
50
|
ralrimivva |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( `' F " U ) ( a ( .s ` S ) b ) e. ( `' F " U ) ) |
| 52 |
9
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> S e. LMod ) |
| 53 |
20 22 13 21 1
|
islss4 |
|- ( S e. LMod -> ( ( `' F " U ) e. X <-> ( ( `' F " U ) e. ( SubGrp ` S ) /\ A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( `' F " U ) ( a ( .s ` S ) b ) e. ( `' F " U ) ) ) ) |
| 54 |
52 53
|
syl |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( ( `' F " U ) e. X <-> ( ( `' F " U ) e. ( SubGrp ` S ) /\ A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( `' F " U ) ( a ( .s ` S ) b ) e. ( `' F " U ) ) ) ) |
| 55 |
8 51 54
|
mpbir2and |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( `' F " U ) e. X ) |