Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmima.x |
|- X = ( LSubSp ` S ) |
2 |
|
lmhmima.y |
|- Y = ( LSubSp ` T ) |
3 |
|
lmghm |
|- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
4 |
|
lmhmlmod2 |
|- ( F e. ( S LMHom T ) -> T e. LMod ) |
5 |
2
|
lsssubg |
|- ( ( T e. LMod /\ U e. Y ) -> U e. ( SubGrp ` T ) ) |
6 |
4 5
|
sylan |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> U e. ( SubGrp ` T ) ) |
7 |
|
ghmpreima |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` T ) ) -> ( `' F " U ) e. ( SubGrp ` S ) ) |
8 |
3 6 7
|
syl2an2r |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( `' F " U ) e. ( SubGrp ` S ) ) |
9 |
|
lmhmlmod1 |
|- ( F e. ( S LMHom T ) -> S e. LMod ) |
10 |
9
|
ad2antrr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> S e. LMod ) |
11 |
|
simprl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> a e. ( Base ` ( Scalar ` S ) ) ) |
12 |
|
cnvimass |
|- ( `' F " U ) C_ dom F |
13 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
14 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
15 |
13 14
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
16 |
15
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
17 |
12 16
|
fssdm |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( `' F " U ) C_ ( Base ` S ) ) |
18 |
17
|
sselda |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ b e. ( `' F " U ) ) -> b e. ( Base ` S ) ) |
19 |
18
|
adantrl |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> b e. ( Base ` S ) ) |
20 |
|
eqid |
|- ( Scalar ` S ) = ( Scalar ` S ) |
21 |
|
eqid |
|- ( .s ` S ) = ( .s ` S ) |
22 |
|
eqid |
|- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
23 |
13 20 21 22
|
lmodvscl |
|- ( ( S e. LMod /\ a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` S ) ) -> ( a ( .s ` S ) b ) e. ( Base ` S ) ) |
24 |
10 11 19 23
|
syl3anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( a ( .s ` S ) b ) e. ( Base ` S ) ) |
25 |
|
simpll |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> F e. ( S LMHom T ) ) |
26 |
|
eqid |
|- ( .s ` T ) = ( .s ` T ) |
27 |
20 22 13 21 26
|
lmhmlin |
|- ( ( F e. ( S LMHom T ) /\ a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` S ) ) -> ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
28 |
25 11 19 27
|
syl3anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
29 |
4
|
ad2antrr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> T e. LMod ) |
30 |
|
simplr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> U e. Y ) |
31 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
32 |
20 31
|
lmhmsca |
|- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
33 |
32
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
34 |
33
|
fveq2d |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` S ) ) ) |
35 |
34
|
eleq2d |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( a e. ( Base ` ( Scalar ` T ) ) <-> a e. ( Base ` ( Scalar ` S ) ) ) ) |
36 |
35
|
biimpar |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ a e. ( Base ` ( Scalar ` S ) ) ) -> a e. ( Base ` ( Scalar ` T ) ) ) |
37 |
36
|
adantrr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> a e. ( Base ` ( Scalar ` T ) ) ) |
38 |
16
|
ffund |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> Fun F ) |
39 |
|
simprr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> b e. ( `' F " U ) ) |
40 |
|
fvimacnvi |
|- ( ( Fun F /\ b e. ( `' F " U ) ) -> ( F ` b ) e. U ) |
41 |
38 39 40
|
syl2an2r |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( F ` b ) e. U ) |
42 |
|
eqid |
|- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
43 |
31 26 42 2
|
lssvscl |
|- ( ( ( T e. LMod /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ ( F ` b ) e. U ) ) -> ( a ( .s ` T ) ( F ` b ) ) e. U ) |
44 |
29 30 37 41 43
|
syl22anc |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( a ( .s ` T ) ( F ` b ) ) e. U ) |
45 |
28 44
|
eqeltrd |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( F ` ( a ( .s ` S ) b ) ) e. U ) |
46 |
|
ffn |
|- ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) |
47 |
|
elpreima |
|- ( F Fn ( Base ` S ) -> ( ( a ( .s ` S ) b ) e. ( `' F " U ) <-> ( ( a ( .s ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( .s ` S ) b ) ) e. U ) ) ) |
48 |
16 46 47
|
3syl |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( ( a ( .s ` S ) b ) e. ( `' F " U ) <-> ( ( a ( .s ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( .s ` S ) b ) ) e. U ) ) ) |
49 |
48
|
adantr |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( ( a ( .s ` S ) b ) e. ( `' F " U ) <-> ( ( a ( .s ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( .s ` S ) b ) ) e. U ) ) ) |
50 |
24 45 49
|
mpbir2and |
|- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( a ( .s ` S ) b ) e. ( `' F " U ) ) |
51 |
50
|
ralrimivva |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( `' F " U ) ( a ( .s ` S ) b ) e. ( `' F " U ) ) |
52 |
9
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> S e. LMod ) |
53 |
20 22 13 21 1
|
islss4 |
|- ( S e. LMod -> ( ( `' F " U ) e. X <-> ( ( `' F " U ) e. ( SubGrp ` S ) /\ A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( `' F " U ) ( a ( .s ` S ) b ) e. ( `' F " U ) ) ) ) |
54 |
52 53
|
syl |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( ( `' F " U ) e. X <-> ( ( `' F " U ) e. ( SubGrp ` S ) /\ A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( `' F " U ) ( a ( .s ` S ) b ) e. ( `' F " U ) ) ) ) |
55 |
8 51 54
|
mpbir2and |
|- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( `' F " U ) e. X ) |