Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmpropd.a |
|- ( ph -> B = ( Base ` J ) ) |
2 |
|
lmhmpropd.b |
|- ( ph -> C = ( Base ` K ) ) |
3 |
|
lmhmpropd.c |
|- ( ph -> B = ( Base ` L ) ) |
4 |
|
lmhmpropd.d |
|- ( ph -> C = ( Base ` M ) ) |
5 |
|
lmhmpropd.1 |
|- ( ph -> F = ( Scalar ` J ) ) |
6 |
|
lmhmpropd.2 |
|- ( ph -> G = ( Scalar ` K ) ) |
7 |
|
lmhmpropd.3 |
|- ( ph -> F = ( Scalar ` L ) ) |
8 |
|
lmhmpropd.4 |
|- ( ph -> G = ( Scalar ` M ) ) |
9 |
|
lmhmpropd.p |
|- P = ( Base ` F ) |
10 |
|
lmhmpropd.q |
|- Q = ( Base ` G ) |
11 |
|
lmhmpropd.e |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` J ) y ) = ( x ( +g ` L ) y ) ) |
12 |
|
lmhmpropd.f |
|- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` M ) y ) ) |
13 |
|
lmhmpropd.g |
|- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` J ) y ) = ( x ( .s ` L ) y ) ) |
14 |
|
lmhmpropd.h |
|- ( ( ph /\ ( x e. Q /\ y e. C ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` M ) y ) ) |
15 |
1 3 11 5 7 9 13
|
lmodpropd |
|- ( ph -> ( J e. LMod <-> L e. LMod ) ) |
16 |
2 4 12 6 8 10 14
|
lmodpropd |
|- ( ph -> ( K e. LMod <-> M e. LMod ) ) |
17 |
15 16
|
anbi12d |
|- ( ph -> ( ( J e. LMod /\ K e. LMod ) <-> ( L e. LMod /\ M e. LMod ) ) ) |
18 |
13
|
oveqrspc2v |
|- ( ( ph /\ ( z e. P /\ w e. B ) ) -> ( z ( .s ` J ) w ) = ( z ( .s ` L ) w ) ) |
19 |
18
|
adantlr |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( z ( .s ` J ) w ) = ( z ( .s ` L ) w ) ) |
20 |
19
|
fveq2d |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( f ` ( z ( .s ` J ) w ) ) = ( f ` ( z ( .s ` L ) w ) ) ) |
21 |
|
simpll |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ph ) |
22 |
|
simprl |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> z e. P ) |
23 |
|
simplrr |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> G = F ) |
24 |
23
|
fveq2d |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( Base ` G ) = ( Base ` F ) ) |
25 |
24 10 9
|
3eqtr4g |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> Q = P ) |
26 |
22 25
|
eleqtrrd |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> z e. Q ) |
27 |
|
simplrl |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> f e. ( J GrpHom K ) ) |
28 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
29 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
30 |
28 29
|
ghmf |
|- ( f e. ( J GrpHom K ) -> f : ( Base ` J ) --> ( Base ` K ) ) |
31 |
27 30
|
syl |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> f : ( Base ` J ) --> ( Base ` K ) ) |
32 |
|
simprr |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> w e. B ) |
33 |
21 1
|
syl |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> B = ( Base ` J ) ) |
34 |
32 33
|
eleqtrd |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> w e. ( Base ` J ) ) |
35 |
31 34
|
ffvelrnd |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( f ` w ) e. ( Base ` K ) ) |
36 |
21 2
|
syl |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> C = ( Base ` K ) ) |
37 |
35 36
|
eleqtrrd |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( f ` w ) e. C ) |
38 |
14
|
oveqrspc2v |
|- ( ( ph /\ ( z e. Q /\ ( f ` w ) e. C ) ) -> ( z ( .s ` K ) ( f ` w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) |
39 |
21 26 37 38
|
syl12anc |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( z ( .s ` K ) ( f ` w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) |
40 |
20 39
|
eqeq12d |
|- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) <-> ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) |
41 |
40
|
2ralbidva |
|- ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) -> ( A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) <-> A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) |
42 |
41
|
pm5.32da |
|- ( ph -> ( ( ( f e. ( J GrpHom K ) /\ G = F ) /\ A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) <-> ( ( f e. ( J GrpHom K ) /\ G = F ) /\ A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) |
43 |
|
df-3an |
|- ( ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) <-> ( ( f e. ( J GrpHom K ) /\ G = F ) /\ A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) |
44 |
|
df-3an |
|- ( ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) <-> ( ( f e. ( J GrpHom K ) /\ G = F ) /\ A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) |
45 |
42 43 44
|
3bitr4g |
|- ( ph -> ( ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) <-> ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) |
46 |
6 5
|
eqeq12d |
|- ( ph -> ( G = F <-> ( Scalar ` K ) = ( Scalar ` J ) ) ) |
47 |
5
|
fveq2d |
|- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` J ) ) ) |
48 |
9 47
|
eqtrid |
|- ( ph -> P = ( Base ` ( Scalar ` J ) ) ) |
49 |
1
|
raleqdv |
|- ( ph -> ( A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) <-> A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) |
50 |
48 49
|
raleqbidv |
|- ( ph -> ( A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) <-> A. z e. ( Base ` ( Scalar ` J ) ) A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) |
51 |
46 50
|
3anbi23d |
|- ( ph -> ( ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) <-> ( f e. ( J GrpHom K ) /\ ( Scalar ` K ) = ( Scalar ` J ) /\ A. z e. ( Base ` ( Scalar ` J ) ) A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) ) |
52 |
1 2 3 4 11 12
|
ghmpropd |
|- ( ph -> ( J GrpHom K ) = ( L GrpHom M ) ) |
53 |
52
|
eleq2d |
|- ( ph -> ( f e. ( J GrpHom K ) <-> f e. ( L GrpHom M ) ) ) |
54 |
8 7
|
eqeq12d |
|- ( ph -> ( G = F <-> ( Scalar ` M ) = ( Scalar ` L ) ) ) |
55 |
7
|
fveq2d |
|- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` L ) ) ) |
56 |
9 55
|
eqtrid |
|- ( ph -> P = ( Base ` ( Scalar ` L ) ) ) |
57 |
3
|
raleqdv |
|- ( ph -> ( A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) <-> A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) |
58 |
56 57
|
raleqbidv |
|- ( ph -> ( A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) <-> A. z e. ( Base ` ( Scalar ` L ) ) A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) |
59 |
53 54 58
|
3anbi123d |
|- ( ph -> ( ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) <-> ( f e. ( L GrpHom M ) /\ ( Scalar ` M ) = ( Scalar ` L ) /\ A. z e. ( Base ` ( Scalar ` L ) ) A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) |
60 |
45 51 59
|
3bitr3d |
|- ( ph -> ( ( f e. ( J GrpHom K ) /\ ( Scalar ` K ) = ( Scalar ` J ) /\ A. z e. ( Base ` ( Scalar ` J ) ) A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) <-> ( f e. ( L GrpHom M ) /\ ( Scalar ` M ) = ( Scalar ` L ) /\ A. z e. ( Base ` ( Scalar ` L ) ) A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) |
61 |
17 60
|
anbi12d |
|- ( ph -> ( ( ( J e. LMod /\ K e. LMod ) /\ ( f e. ( J GrpHom K ) /\ ( Scalar ` K ) = ( Scalar ` J ) /\ A. z e. ( Base ` ( Scalar ` J ) ) A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) <-> ( ( L e. LMod /\ M e. LMod ) /\ ( f e. ( L GrpHom M ) /\ ( Scalar ` M ) = ( Scalar ` L ) /\ A. z e. ( Base ` ( Scalar ` L ) ) A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) ) |
62 |
|
eqid |
|- ( Scalar ` J ) = ( Scalar ` J ) |
63 |
|
eqid |
|- ( Scalar ` K ) = ( Scalar ` K ) |
64 |
|
eqid |
|- ( Base ` ( Scalar ` J ) ) = ( Base ` ( Scalar ` J ) ) |
65 |
|
eqid |
|- ( .s ` J ) = ( .s ` J ) |
66 |
|
eqid |
|- ( .s ` K ) = ( .s ` K ) |
67 |
62 63 64 28 65 66
|
islmhm |
|- ( f e. ( J LMHom K ) <-> ( ( J e. LMod /\ K e. LMod ) /\ ( f e. ( J GrpHom K ) /\ ( Scalar ` K ) = ( Scalar ` J ) /\ A. z e. ( Base ` ( Scalar ` J ) ) A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) ) |
68 |
|
eqid |
|- ( Scalar ` L ) = ( Scalar ` L ) |
69 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
70 |
|
eqid |
|- ( Base ` ( Scalar ` L ) ) = ( Base ` ( Scalar ` L ) ) |
71 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
72 |
|
eqid |
|- ( .s ` L ) = ( .s ` L ) |
73 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
74 |
68 69 70 71 72 73
|
islmhm |
|- ( f e. ( L LMHom M ) <-> ( ( L e. LMod /\ M e. LMod ) /\ ( f e. ( L GrpHom M ) /\ ( Scalar ` M ) = ( Scalar ` L ) /\ A. z e. ( Base ` ( Scalar ` L ) ) A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) |
75 |
61 67 74
|
3bitr4g |
|- ( ph -> ( f e. ( J LMHom K ) <-> f e. ( L LMHom M ) ) ) |
76 |
75
|
eqrdv |
|- ( ph -> ( J LMHom K ) = ( L LMHom M ) ) |