Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmqusker.1 |
|- .0. = ( 0g ` H ) |
2 |
|
lmhmqusker.f |
|- ( ph -> F e. ( G LMHom H ) ) |
3 |
|
lmhmqusker.k |
|- K = ( `' F " { .0. } ) |
4 |
|
lmhmqusker.q |
|- Q = ( G /s ( G ~QG K ) ) |
5 |
|
lmhmqusker.s |
|- ( ph -> ran F = ( Base ` H ) ) |
6 |
|
lmhmqusker.j |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
7 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
8 |
|
eqid |
|- ( .s ` Q ) = ( .s ` Q ) |
9 |
|
eqid |
|- ( .s ` H ) = ( .s ` H ) |
10 |
|
eqid |
|- ( Scalar ` Q ) = ( Scalar ` Q ) |
11 |
|
eqid |
|- ( Scalar ` H ) = ( Scalar ` H ) |
12 |
|
eqid |
|- ( Base ` ( Scalar ` Q ) ) = ( Base ` ( Scalar ` Q ) ) |
13 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
14 |
|
lmhmlmod1 |
|- ( F e. ( G LMHom H ) -> G e. LMod ) |
15 |
2 14
|
syl |
|- ( ph -> G e. LMod ) |
16 |
|
eqid |
|- ( LSubSp ` G ) = ( LSubSp ` G ) |
17 |
3 1 16
|
lmhmkerlss |
|- ( F e. ( G LMHom H ) -> K e. ( LSubSp ` G ) ) |
18 |
2 17
|
syl |
|- ( ph -> K e. ( LSubSp ` G ) ) |
19 |
4 13 15 18
|
quslmod |
|- ( ph -> Q e. LMod ) |
20 |
|
lmhmlmod2 |
|- ( F e. ( G LMHom H ) -> H e. LMod ) |
21 |
2 20
|
syl |
|- ( ph -> H e. LMod ) |
22 |
|
eqid |
|- ( Scalar ` G ) = ( Scalar ` G ) |
23 |
22 11
|
lmhmsca |
|- ( F e. ( G LMHom H ) -> ( Scalar ` H ) = ( Scalar ` G ) ) |
24 |
2 23
|
syl |
|- ( ph -> ( Scalar ` H ) = ( Scalar ` G ) ) |
25 |
4
|
a1i |
|- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
26 |
13
|
a1i |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
27 |
|
ovexd |
|- ( ph -> ( G ~QG K ) e. _V ) |
28 |
25 26 27 15 22
|
quss |
|- ( ph -> ( Scalar ` G ) = ( Scalar ` Q ) ) |
29 |
24 28
|
eqtrd |
|- ( ph -> ( Scalar ` H ) = ( Scalar ` Q ) ) |
30 |
|
lmghm |
|- ( F e. ( G LMHom H ) -> F e. ( G GrpHom H ) ) |
31 |
2 30
|
syl |
|- ( ph -> F e. ( G GrpHom H ) ) |
32 |
1 31 3 4 6 5
|
ghmqusker |
|- ( ph -> J e. ( Q GrpIso H ) ) |
33 |
|
gimghm |
|- ( J e. ( Q GrpIso H ) -> J e. ( Q GrpHom H ) ) |
34 |
32 33
|
syl |
|- ( ph -> J e. ( Q GrpHom H ) ) |
35 |
1
|
ghmker |
|- ( F e. ( G GrpHom H ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
36 |
31 35
|
syl |
|- ( ph -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
37 |
3 36
|
eqeltrid |
|- ( ph -> K e. ( NrmSGrp ` G ) ) |
38 |
|
nsgsubg |
|- ( K e. ( NrmSGrp ` G ) -> K e. ( SubGrp ` G ) ) |
39 |
|
eqid |
|- ( G ~QG K ) = ( G ~QG K ) |
40 |
13 39
|
eqger |
|- ( K e. ( SubGrp ` G ) -> ( G ~QG K ) Er ( Base ` G ) ) |
41 |
37 38 40
|
3syl |
|- ( ph -> ( G ~QG K ) Er ( Base ` G ) ) |
42 |
41
|
ad4antr |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( G ~QG K ) Er ( Base ` G ) ) |
43 |
|
simpllr |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> r e. ( Base ` Q ) ) |
44 |
25 26 27 15
|
qusbas |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
45 |
44
|
ad4antr |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
46 |
43 45
|
eleqtrrd |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> r e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
47 |
|
simplr |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> x e. r ) |
48 |
|
qsel |
|- ( ( ( G ~QG K ) Er ( Base ` G ) /\ r e. ( ( Base ` G ) /. ( G ~QG K ) ) /\ x e. r ) -> r = [ x ] ( G ~QG K ) ) |
49 |
42 46 47 48
|
syl3anc |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> r = [ x ] ( G ~QG K ) ) |
50 |
49
|
oveq2d |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( k ( .s ` Q ) r ) = ( k ( .s ` Q ) [ x ] ( G ~QG K ) ) ) |
51 |
|
eqid |
|- ( Base ` ( Scalar ` G ) ) = ( Base ` ( Scalar ` G ) ) |
52 |
|
eqid |
|- ( .s ` G ) = ( .s ` G ) |
53 |
15
|
ad4antr |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> G e. LMod ) |
54 |
18
|
ad4antr |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> K e. ( LSubSp ` G ) ) |
55 |
|
simp-4r |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> k e. ( Base ` ( Scalar ` Q ) ) ) |
56 |
28
|
fveq2d |
|- ( ph -> ( Base ` ( Scalar ` G ) ) = ( Base ` ( Scalar ` Q ) ) ) |
57 |
56
|
ad4antr |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( Base ` ( Scalar ` G ) ) = ( Base ` ( Scalar ` Q ) ) ) |
58 |
55 57
|
eleqtrrd |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> k e. ( Base ` ( Scalar ` G ) ) ) |
59 |
41
|
qsss |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) C_ ~P ( Base ` G ) ) |
60 |
44 59
|
eqsstrrd |
|- ( ph -> ( Base ` Q ) C_ ~P ( Base ` G ) ) |
61 |
60
|
sselda |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ~P ( Base ` G ) ) |
62 |
61
|
elpwid |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r C_ ( Base ` G ) ) |
63 |
62
|
ad5ant13 |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> r C_ ( Base ` G ) ) |
64 |
63 47
|
sseldd |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> x e. ( Base ` G ) ) |
65 |
13 39 51 52 53 54 58 4 8 64
|
qusvsval |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( k ( .s ` Q ) [ x ] ( G ~QG K ) ) = [ ( k ( .s ` G ) x ) ] ( G ~QG K ) ) |
66 |
50 65
|
eqtrd |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( k ( .s ` Q ) r ) = [ ( k ( .s ` G ) x ) ] ( G ~QG K ) ) |
67 |
66
|
fveq2d |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` ( k ( .s ` Q ) r ) ) = ( J ` [ ( k ( .s ` G ) x ) ] ( G ~QG K ) ) ) |
68 |
31
|
ad4antr |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F e. ( G GrpHom H ) ) |
69 |
13 22 52 51
|
lmodvscl |
|- ( ( G e. LMod /\ k e. ( Base ` ( Scalar ` G ) ) /\ x e. ( Base ` G ) ) -> ( k ( .s ` G ) x ) e. ( Base ` G ) ) |
70 |
53 58 64 69
|
syl3anc |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( k ( .s ` G ) x ) e. ( Base ` G ) ) |
71 |
1 68 3 4 6 70
|
ghmquskerlem1 |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` [ ( k ( .s ` G ) x ) ] ( G ~QG K ) ) = ( F ` ( k ( .s ` G ) x ) ) ) |
72 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F e. ( G LMHom H ) ) |
73 |
22 51 13 52 9
|
lmhmlin |
|- ( ( F e. ( G LMHom H ) /\ k e. ( Base ` ( Scalar ` G ) ) /\ x e. ( Base ` G ) ) -> ( F ` ( k ( .s ` G ) x ) ) = ( k ( .s ` H ) ( F ` x ) ) ) |
74 |
72 58 64 73
|
syl3anc |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` ( k ( .s ` G ) x ) ) = ( k ( .s ` H ) ( F ` x ) ) ) |
75 |
67 71 74
|
3eqtrd |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` ( k ( .s ` Q ) r ) ) = ( k ( .s ` H ) ( F ` x ) ) ) |
76 |
|
simpr |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) = ( F ` x ) ) |
77 |
76
|
oveq2d |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( k ( .s ` H ) ( J ` r ) ) = ( k ( .s ` H ) ( F ` x ) ) ) |
78 |
75 77
|
eqtr4d |
|- ( ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` ( k ( .s ` Q ) r ) ) = ( k ( .s ` H ) ( J ` r ) ) ) |
79 |
31
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
80 |
|
simpr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) -> r e. ( Base ` Q ) ) |
81 |
1 79 3 4 6 80
|
ghmquskerlem2 |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) |
82 |
78 81
|
r19.29a |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` Q ) ) ) /\ r e. ( Base ` Q ) ) -> ( J ` ( k ( .s ` Q ) r ) ) = ( k ( .s ` H ) ( J ` r ) ) ) |
83 |
82
|
anasss |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` Q ) ) /\ r e. ( Base ` Q ) ) ) -> ( J ` ( k ( .s ` Q ) r ) ) = ( k ( .s ` H ) ( J ` r ) ) ) |
84 |
7 8 9 10 11 12 19 21 29 34 83
|
islmhmd |
|- ( ph -> J e. ( Q LMHom H ) ) |
85 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
86 |
7 85
|
gimf1o |
|- ( J e. ( Q GrpIso H ) -> J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) |
87 |
32 86
|
syl |
|- ( ph -> J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) |
88 |
7 85
|
islmim |
|- ( J e. ( Q LMIso H ) <-> ( J e. ( Q LMHom H ) /\ J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) ) |
89 |
84 87 88
|
sylanbrc |
|- ( ph -> J e. ( Q LMIso H ) ) |