| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 2 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 3 | 1 2 | lmhmf |  |-  ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 4 |  | ffn |  |-  ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) | 
						
							| 5 |  | fnima |  |-  ( F Fn ( Base ` S ) -> ( F " ( Base ` S ) ) = ran F ) | 
						
							| 6 | 3 4 5 | 3syl |  |-  ( F e. ( S LMHom T ) -> ( F " ( Base ` S ) ) = ran F ) | 
						
							| 7 |  | lmhmlmod1 |  |-  ( F e. ( S LMHom T ) -> S e. LMod ) | 
						
							| 8 |  | eqid |  |-  ( LSubSp ` S ) = ( LSubSp ` S ) | 
						
							| 9 | 1 8 | lss1 |  |-  ( S e. LMod -> ( Base ` S ) e. ( LSubSp ` S ) ) | 
						
							| 10 | 7 9 | syl |  |-  ( F e. ( S LMHom T ) -> ( Base ` S ) e. ( LSubSp ` S ) ) | 
						
							| 11 |  | eqid |  |-  ( LSubSp ` T ) = ( LSubSp ` T ) | 
						
							| 12 | 8 11 | lmhmima |  |-  ( ( F e. ( S LMHom T ) /\ ( Base ` S ) e. ( LSubSp ` S ) ) -> ( F " ( Base ` S ) ) e. ( LSubSp ` T ) ) | 
						
							| 13 | 10 12 | mpdan |  |-  ( F e. ( S LMHom T ) -> ( F " ( Base ` S ) ) e. ( LSubSp ` T ) ) | 
						
							| 14 | 6 13 | eqeltrrd |  |-  ( F e. ( S LMHom T ) -> ran F e. ( LSubSp ` T ) ) |