Description: A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmhmlem.k | |- K = ( Scalar ` S ) |
|
lmhmlem.l | |- L = ( Scalar ` T ) |
||
Assertion | lmhmsca | |- ( F e. ( S LMHom T ) -> L = K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlem.k | |- K = ( Scalar ` S ) |
|
2 | lmhmlem.l | |- L = ( Scalar ` T ) |
|
3 | 1 2 | lmhmlem | |- ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K ) ) ) |
4 | 3 | simprrd | |- ( F e. ( S LMHom T ) -> L = K ) |