Description: A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmlem.k | |- K = ( Scalar ` S ) | |
| lmhmlem.l | |- L = ( Scalar ` T ) | ||
| Assertion | lmhmsca | |- ( F e. ( S LMHom T ) -> L = K ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lmhmlem.k | |- K = ( Scalar ` S ) | |
| 2 | lmhmlem.l | |- L = ( Scalar ` T ) | |
| 3 | 1 2 | lmhmlem | |- ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K ) ) ) | 
| 4 | 3 | simprrd | |- ( F e. ( S LMHom T ) -> L = K ) |