Metamath Proof Explorer


Theorem lmhmsca

Description: A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmlem.k
|- K = ( Scalar ` S )
lmhmlem.l
|- L = ( Scalar ` T )
Assertion lmhmsca
|- ( F e. ( S LMHom T ) -> L = K )

Proof

Step Hyp Ref Expression
1 lmhmlem.k
 |-  K = ( Scalar ` S )
2 lmhmlem.l
 |-  L = ( Scalar ` T )
3 1 2 lmhmlem
 |-  ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K ) ) )
4 3 simprrd
 |-  ( F e. ( S LMHom T ) -> L = K )