Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmvsca.v |
|- V = ( Base ` M ) |
2 |
|
lmhmvsca.s |
|- .x. = ( .s ` N ) |
3 |
|
lmhmvsca.j |
|- J = ( Scalar ` N ) |
4 |
|
lmhmvsca.k |
|- K = ( Base ` J ) |
5 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
6 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
7 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
8 |
|
lmhmlmod1 |
|- ( F e. ( M LMHom N ) -> M e. LMod ) |
9 |
8
|
3ad2ant3 |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> M e. LMod ) |
10 |
|
lmhmlmod2 |
|- ( F e. ( M LMHom N ) -> N e. LMod ) |
11 |
10
|
3ad2ant3 |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> N e. LMod ) |
12 |
6 3
|
lmhmsca |
|- ( F e. ( M LMHom N ) -> J = ( Scalar ` M ) ) |
13 |
12
|
3ad2ant3 |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> J = ( Scalar ` M ) ) |
14 |
1
|
fvexi |
|- V e. _V |
15 |
14
|
a1i |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> V e. _V ) |
16 |
|
simpl2 |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ v e. V ) -> A e. K ) |
17 |
|
eqid |
|- ( Base ` N ) = ( Base ` N ) |
18 |
1 17
|
lmhmf |
|- ( F e. ( M LMHom N ) -> F : V --> ( Base ` N ) ) |
19 |
18
|
3ad2ant3 |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> F : V --> ( Base ` N ) ) |
20 |
19
|
ffvelrnda |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ v e. V ) -> ( F ` v ) e. ( Base ` N ) ) |
21 |
|
fconstmpt |
|- ( V X. { A } ) = ( v e. V |-> A ) |
22 |
21
|
a1i |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( V X. { A } ) = ( v e. V |-> A ) ) |
23 |
19
|
feqmptd |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> F = ( v e. V |-> ( F ` v ) ) ) |
24 |
15 16 20 22 23
|
offval2 |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( V X. { A } ) oF .x. F ) = ( v e. V |-> ( A .x. ( F ` v ) ) ) ) |
25 |
|
eqidd |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( u e. ( Base ` N ) |-> ( A .x. u ) ) = ( u e. ( Base ` N ) |-> ( A .x. u ) ) ) |
26 |
|
oveq2 |
|- ( u = ( F ` v ) -> ( A .x. u ) = ( A .x. ( F ` v ) ) ) |
27 |
20 23 25 26
|
fmptco |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( u e. ( Base ` N ) |-> ( A .x. u ) ) o. F ) = ( v e. V |-> ( A .x. ( F ` v ) ) ) ) |
28 |
24 27
|
eqtr4d |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( V X. { A } ) oF .x. F ) = ( ( u e. ( Base ` N ) |-> ( A .x. u ) ) o. F ) ) |
29 |
|
simp2 |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> A e. K ) |
30 |
17 3 2 4
|
lmodvsghm |
|- ( ( N e. LMod /\ A e. K ) -> ( u e. ( Base ` N ) |-> ( A .x. u ) ) e. ( N GrpHom N ) ) |
31 |
11 29 30
|
syl2anc |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( u e. ( Base ` N ) |-> ( A .x. u ) ) e. ( N GrpHom N ) ) |
32 |
|
lmghm |
|- ( F e. ( M LMHom N ) -> F e. ( M GrpHom N ) ) |
33 |
32
|
3ad2ant3 |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> F e. ( M GrpHom N ) ) |
34 |
|
ghmco |
|- ( ( ( u e. ( Base ` N ) |-> ( A .x. u ) ) e. ( N GrpHom N ) /\ F e. ( M GrpHom N ) ) -> ( ( u e. ( Base ` N ) |-> ( A .x. u ) ) o. F ) e. ( M GrpHom N ) ) |
35 |
31 33 34
|
syl2anc |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( u e. ( Base ` N ) |-> ( A .x. u ) ) o. F ) e. ( M GrpHom N ) ) |
36 |
28 35
|
eqeltrd |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( V X. { A } ) oF .x. F ) e. ( M GrpHom N ) ) |
37 |
|
simpl1 |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> J e. CRing ) |
38 |
|
simpl2 |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> A e. K ) |
39 |
|
simprl |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> x e. ( Base ` ( Scalar ` M ) ) ) |
40 |
13
|
fveq2d |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( Base ` J ) = ( Base ` ( Scalar ` M ) ) ) |
41 |
4 40
|
eqtrid |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> K = ( Base ` ( Scalar ` M ) ) ) |
42 |
41
|
adantr |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> K = ( Base ` ( Scalar ` M ) ) ) |
43 |
39 42
|
eleqtrrd |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> x e. K ) |
44 |
|
eqid |
|- ( .r ` J ) = ( .r ` J ) |
45 |
4 44
|
crngcom |
|- ( ( J e. CRing /\ A e. K /\ x e. K ) -> ( A ( .r ` J ) x ) = ( x ( .r ` J ) A ) ) |
46 |
37 38 43 45
|
syl3anc |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( A ( .r ` J ) x ) = ( x ( .r ` J ) A ) ) |
47 |
46
|
oveq1d |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( A ( .r ` J ) x ) .x. ( F ` y ) ) = ( ( x ( .r ` J ) A ) .x. ( F ` y ) ) ) |
48 |
11
|
adantr |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> N e. LMod ) |
49 |
19
|
adantr |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> F : V --> ( Base ` N ) ) |
50 |
|
simprr |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> y e. V ) |
51 |
49 50
|
ffvelrnd |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( F ` y ) e. ( Base ` N ) ) |
52 |
17 3 2 4 44
|
lmodvsass |
|- ( ( N e. LMod /\ ( A e. K /\ x e. K /\ ( F ` y ) e. ( Base ` N ) ) ) -> ( ( A ( .r ` J ) x ) .x. ( F ` y ) ) = ( A .x. ( x .x. ( F ` y ) ) ) ) |
53 |
48 38 43 51 52
|
syl13anc |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( A ( .r ` J ) x ) .x. ( F ` y ) ) = ( A .x. ( x .x. ( F ` y ) ) ) ) |
54 |
17 3 2 4 44
|
lmodvsass |
|- ( ( N e. LMod /\ ( x e. K /\ A e. K /\ ( F ` y ) e. ( Base ` N ) ) ) -> ( ( x ( .r ` J ) A ) .x. ( F ` y ) ) = ( x .x. ( A .x. ( F ` y ) ) ) ) |
55 |
48 43 38 51 54
|
syl13anc |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( x ( .r ` J ) A ) .x. ( F ` y ) ) = ( x .x. ( A .x. ( F ` y ) ) ) ) |
56 |
47 53 55
|
3eqtr3d |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( A .x. ( x .x. ( F ` y ) ) ) = ( x .x. ( A .x. ( F ` y ) ) ) ) |
57 |
1 6 5 7
|
lmodvscl |
|- ( ( M e. LMod /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) -> ( x ( .s ` M ) y ) e. V ) |
58 |
57
|
3expb |
|- ( ( M e. LMod /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( x ( .s ` M ) y ) e. V ) |
59 |
9 58
|
sylan |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( x ( .s ` M ) y ) e. V ) |
60 |
14
|
a1i |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> V e. _V ) |
61 |
19
|
ffnd |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> F Fn V ) |
62 |
61
|
adantr |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> F Fn V ) |
63 |
6 7 1 5 2
|
lmhmlin |
|- ( ( F e. ( M LMHom N ) /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x .x. ( F ` y ) ) ) |
64 |
63
|
3expb |
|- ( ( F e. ( M LMHom N ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x .x. ( F ` y ) ) ) |
65 |
64
|
3ad2antl3 |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x .x. ( F ` y ) ) ) |
66 |
65
|
adantr |
|- ( ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) /\ ( x ( .s ` M ) y ) e. V ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x .x. ( F ` y ) ) ) |
67 |
60 38 62 66
|
ofc1 |
|- ( ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) /\ ( x ( .s ` M ) y ) e. V ) -> ( ( ( V X. { A } ) oF .x. F ) ` ( x ( .s ` M ) y ) ) = ( A .x. ( x .x. ( F ` y ) ) ) ) |
68 |
59 67
|
mpdan |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( ( V X. { A } ) oF .x. F ) ` ( x ( .s ` M ) y ) ) = ( A .x. ( x .x. ( F ` y ) ) ) ) |
69 |
|
eqidd |
|- ( ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) /\ y e. V ) -> ( F ` y ) = ( F ` y ) ) |
70 |
60 38 62 69
|
ofc1 |
|- ( ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) /\ y e. V ) -> ( ( ( V X. { A } ) oF .x. F ) ` y ) = ( A .x. ( F ` y ) ) ) |
71 |
50 70
|
mpdan |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( ( V X. { A } ) oF .x. F ) ` y ) = ( A .x. ( F ` y ) ) ) |
72 |
71
|
oveq2d |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( x .x. ( ( ( V X. { A } ) oF .x. F ) ` y ) ) = ( x .x. ( A .x. ( F ` y ) ) ) ) |
73 |
56 68 72
|
3eqtr4d |
|- ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( ( V X. { A } ) oF .x. F ) ` ( x ( .s ` M ) y ) ) = ( x .x. ( ( ( V X. { A } ) oF .x. F ) ` y ) ) ) |
74 |
1 5 2 6 3 7 9 11 13 36 73
|
islmhmd |
|- ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( V X. { A } ) oF .x. F ) e. ( M LMHom N ) ) |