| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lmhmvsca.v | 
							 |-  V = ( Base ` M )  | 
						
						
							| 2 | 
							
								
							 | 
							lmhmvsca.s | 
							 |-  .x. = ( .s ` N )  | 
						
						
							| 3 | 
							
								
							 | 
							lmhmvsca.j | 
							 |-  J = ( Scalar ` N )  | 
						
						
							| 4 | 
							
								
							 | 
							lmhmvsca.k | 
							 |-  K = ( Base ` J )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( .s ` M ) = ( .s ` M )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Scalar ` M ) = ( Scalar ` M )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) )  | 
						
						
							| 8 | 
							
								
							 | 
							lmhmlmod1 | 
							 |-  ( F e. ( M LMHom N ) -> M e. LMod )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant3 | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> M e. LMod )  | 
						
						
							| 10 | 
							
								
							 | 
							lmhmlmod2 | 
							 |-  ( F e. ( M LMHom N ) -> N e. LMod )  | 
						
						
							| 11 | 
							
								10
							 | 
							3ad2ant3 | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> N e. LMod )  | 
						
						
							| 12 | 
							
								6 3
							 | 
							lmhmsca | 
							 |-  ( F e. ( M LMHom N ) -> J = ( Scalar ` M ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3ad2ant3 | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> J = ( Scalar ` M ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							fvexi | 
							 |-  V e. _V  | 
						
						
							| 15 | 
							
								14
							 | 
							a1i | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> V e. _V )  | 
						
						
							| 16 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ v e. V ) -> A e. K )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` N ) = ( Base ` N )  | 
						
						
							| 18 | 
							
								1 17
							 | 
							lmhmf | 
							 |-  ( F e. ( M LMHom N ) -> F : V --> ( Base ` N ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							3ad2ant3 | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> F : V --> ( Base ` N ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ffvelcdmda | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ v e. V ) -> ( F ` v ) e. ( Base ` N ) )  | 
						
						
							| 21 | 
							
								
							 | 
							fconstmpt | 
							 |-  ( V X. { A } ) = ( v e. V |-> A ) | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( V X. { A } ) = ( v e. V |-> A ) ) | 
						
						
							| 23 | 
							
								19
							 | 
							feqmptd | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> F = ( v e. V |-> ( F ` v ) ) )  | 
						
						
							| 24 | 
							
								15 16 20 22 23
							 | 
							offval2 | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( V X. { A } ) oF .x. F ) = ( v e. V |-> ( A .x. ( F ` v ) ) ) ) | 
						
						
							| 25 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( u e. ( Base ` N ) |-> ( A .x. u ) ) = ( u e. ( Base ` N ) |-> ( A .x. u ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							oveq2 | 
							 |-  ( u = ( F ` v ) -> ( A .x. u ) = ( A .x. ( F ` v ) ) )  | 
						
						
							| 27 | 
							
								20 23 25 26
							 | 
							fmptco | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( u e. ( Base ` N ) |-> ( A .x. u ) ) o. F ) = ( v e. V |-> ( A .x. ( F ` v ) ) ) )  | 
						
						
							| 28 | 
							
								24 27
							 | 
							eqtr4d | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( V X. { A } ) oF .x. F ) = ( ( u e. ( Base ` N ) |-> ( A .x. u ) ) o. F ) ) | 
						
						
							| 29 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> A e. K )  | 
						
						
							| 30 | 
							
								17 3 2 4
							 | 
							lmodvsghm | 
							 |-  ( ( N e. LMod /\ A e. K ) -> ( u e. ( Base ` N ) |-> ( A .x. u ) ) e. ( N GrpHom N ) )  | 
						
						
							| 31 | 
							
								11 29 30
							 | 
							syl2anc | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( u e. ( Base ` N ) |-> ( A .x. u ) ) e. ( N GrpHom N ) )  | 
						
						
							| 32 | 
							
								
							 | 
							lmghm | 
							 |-  ( F e. ( M LMHom N ) -> F e. ( M GrpHom N ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							3ad2ant3 | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> F e. ( M GrpHom N ) )  | 
						
						
							| 34 | 
							
								
							 | 
							ghmco | 
							 |-  ( ( ( u e. ( Base ` N ) |-> ( A .x. u ) ) e. ( N GrpHom N ) /\ F e. ( M GrpHom N ) ) -> ( ( u e. ( Base ` N ) |-> ( A .x. u ) ) o. F ) e. ( M GrpHom N ) )  | 
						
						
							| 35 | 
							
								31 33 34
							 | 
							syl2anc | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( u e. ( Base ` N ) |-> ( A .x. u ) ) o. F ) e. ( M GrpHom N ) )  | 
						
						
							| 36 | 
							
								28 35
							 | 
							eqeltrd | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( V X. { A } ) oF .x. F ) e. ( M GrpHom N ) ) | 
						
						
							| 37 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> J e. CRing )  | 
						
						
							| 38 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> A e. K )  | 
						
						
							| 39 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> x e. ( Base ` ( Scalar ` M ) ) )  | 
						
						
							| 40 | 
							
								13
							 | 
							fveq2d | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( Base ` J ) = ( Base ` ( Scalar ` M ) ) )  | 
						
						
							| 41 | 
							
								4 40
							 | 
							eqtrid | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> K = ( Base ` ( Scalar ` M ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantr | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> K = ( Base ` ( Scalar ` M ) ) )  | 
						
						
							| 43 | 
							
								39 42
							 | 
							eleqtrrd | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> x e. K )  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` J ) = ( .r ` J )  | 
						
						
							| 45 | 
							
								4 44
							 | 
							crngcom | 
							 |-  ( ( J e. CRing /\ A e. K /\ x e. K ) -> ( A ( .r ` J ) x ) = ( x ( .r ` J ) A ) )  | 
						
						
							| 46 | 
							
								37 38 43 45
							 | 
							syl3anc | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( A ( .r ` J ) x ) = ( x ( .r ` J ) A ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							oveq1d | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( A ( .r ` J ) x ) .x. ( F ` y ) ) = ( ( x ( .r ` J ) A ) .x. ( F ` y ) ) )  | 
						
						
							| 48 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> N e. LMod )  | 
						
						
							| 49 | 
							
								19
							 | 
							adantr | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> F : V --> ( Base ` N ) )  | 
						
						
							| 50 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> y e. V )  | 
						
						
							| 51 | 
							
								49 50
							 | 
							ffvelcdmd | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( F ` y ) e. ( Base ` N ) )  | 
						
						
							| 52 | 
							
								17 3 2 4 44
							 | 
							lmodvsass | 
							 |-  ( ( N e. LMod /\ ( A e. K /\ x e. K /\ ( F ` y ) e. ( Base ` N ) ) ) -> ( ( A ( .r ` J ) x ) .x. ( F ` y ) ) = ( A .x. ( x .x. ( F ` y ) ) ) )  | 
						
						
							| 53 | 
							
								48 38 43 51 52
							 | 
							syl13anc | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( A ( .r ` J ) x ) .x. ( F ` y ) ) = ( A .x. ( x .x. ( F ` y ) ) ) )  | 
						
						
							| 54 | 
							
								17 3 2 4 44
							 | 
							lmodvsass | 
							 |-  ( ( N e. LMod /\ ( x e. K /\ A e. K /\ ( F ` y ) e. ( Base ` N ) ) ) -> ( ( x ( .r ` J ) A ) .x. ( F ` y ) ) = ( x .x. ( A .x. ( F ` y ) ) ) )  | 
						
						
							| 55 | 
							
								48 43 38 51 54
							 | 
							syl13anc | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( x ( .r ` J ) A ) .x. ( F ` y ) ) = ( x .x. ( A .x. ( F ` y ) ) ) )  | 
						
						
							| 56 | 
							
								47 53 55
							 | 
							3eqtr3d | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( A .x. ( x .x. ( F ` y ) ) ) = ( x .x. ( A .x. ( F ` y ) ) ) )  | 
						
						
							| 57 | 
							
								1 6 5 7
							 | 
							lmodvscl | 
							 |-  ( ( M e. LMod /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) -> ( x ( .s ` M ) y ) e. V )  | 
						
						
							| 58 | 
							
								57
							 | 
							3expb | 
							 |-  ( ( M e. LMod /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( x ( .s ` M ) y ) e. V )  | 
						
						
							| 59 | 
							
								9 58
							 | 
							sylan | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( x ( .s ` M ) y ) e. V )  | 
						
						
							| 60 | 
							
								14
							 | 
							a1i | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> V e. _V )  | 
						
						
							| 61 | 
							
								19
							 | 
							ffnd | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> F Fn V )  | 
						
						
							| 62 | 
							
								61
							 | 
							adantr | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> F Fn V )  | 
						
						
							| 63 | 
							
								6 7 1 5 2
							 | 
							lmhmlin | 
							 |-  ( ( F e. ( M LMHom N ) /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x .x. ( F ` y ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							3expb | 
							 |-  ( ( F e. ( M LMHom N ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x .x. ( F ` y ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							3ad2antl3 | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x .x. ( F ` y ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							adantr | 
							 |-  ( ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) /\ ( x ( .s ` M ) y ) e. V ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x .x. ( F ` y ) ) )  | 
						
						
							| 67 | 
							
								60 38 62 66
							 | 
							ofc1 | 
							 |-  ( ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) /\ ( x ( .s ` M ) y ) e. V ) -> ( ( ( V X. { A } ) oF .x. F ) ` ( x ( .s ` M ) y ) ) = ( A .x. ( x .x. ( F ` y ) ) ) ) | 
						
						
							| 68 | 
							
								59 67
							 | 
							mpdan | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( ( V X. { A } ) oF .x. F ) ` ( x ( .s ` M ) y ) ) = ( A .x. ( x .x. ( F ` y ) ) ) ) | 
						
						
							| 69 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) /\ y e. V ) -> ( F ` y ) = ( F ` y ) )  | 
						
						
							| 70 | 
							
								60 38 62 69
							 | 
							ofc1 | 
							 |-  ( ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) /\ y e. V ) -> ( ( ( V X. { A } ) oF .x. F ) ` y ) = ( A .x. ( F ` y ) ) ) | 
						
						
							| 71 | 
							
								50 70
							 | 
							mpdan | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( ( V X. { A } ) oF .x. F ) ` y ) = ( A .x. ( F ` y ) ) ) | 
						
						
							| 72 | 
							
								71
							 | 
							oveq2d | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( x .x. ( ( ( V X. { A } ) oF .x. F ) ` y ) ) = ( x .x. ( A .x. ( F ` y ) ) ) ) | 
						
						
							| 73 | 
							
								56 68 72
							 | 
							3eqtr4d | 
							 |-  ( ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. V ) ) -> ( ( ( V X. { A } ) oF .x. F ) ` ( x ( .s ` M ) y ) ) = ( x .x. ( ( ( V X. { A } ) oF .x. F ) ` y ) ) ) | 
						
						
							| 74 | 
							
								1 5 2 6 3 7 9 11 13 36 73
							 | 
							islmhmd | 
							 |-  ( ( J e. CRing /\ A e. K /\ F e. ( M LMHom N ) ) -> ( ( V X. { A } ) oF .x. F ) e. ( M LMHom N ) ) |