Description: The mirroring line is an invariant. (Contributed by Thierry Arnoux, 8-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismid.p | |- P = ( Base ` G ) |
|
ismid.d | |- .- = ( dist ` G ) |
||
ismid.i | |- I = ( Itv ` G ) |
||
ismid.g | |- ( ph -> G e. TarskiG ) |
||
ismid.1 | |- ( ph -> G TarskiGDim>= 2 ) |
||
lmif.m | |- M = ( ( lInvG ` G ) ` D ) |
||
lmif.l | |- L = ( LineG ` G ) |
||
lmif.d | |- ( ph -> D e. ran L ) |
||
lmicl.1 | |- ( ph -> A e. P ) |
||
lmicinv.1 | |- ( ph -> A e. D ) |
||
Assertion | lmicinv | |- ( ph -> ( M ` A ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | |- P = ( Base ` G ) |
|
2 | ismid.d | |- .- = ( dist ` G ) |
|
3 | ismid.i | |- I = ( Itv ` G ) |
|
4 | ismid.g | |- ( ph -> G e. TarskiG ) |
|
5 | ismid.1 | |- ( ph -> G TarskiGDim>= 2 ) |
|
6 | lmif.m | |- M = ( ( lInvG ` G ) ` D ) |
|
7 | lmif.l | |- L = ( LineG ` G ) |
|
8 | lmif.d | |- ( ph -> D e. ran L ) |
|
9 | lmicl.1 | |- ( ph -> A e. P ) |
|
10 | lmicinv.1 | |- ( ph -> A e. D ) |
|
11 | 1 2 3 4 5 6 7 8 9 | lmiinv | |- ( ph -> ( ( M ` A ) = A <-> A e. D ) ) |
12 | 10 11 | mpbird | |- ( ph -> ( M ` A ) = A ) |