Metamath Proof Explorer


Theorem lmiclcl

Description: Isomorphism implies the left side is a module. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion lmiclcl
|- ( R ~=m S -> R e. LMod )

Proof

Step Hyp Ref Expression
1 brlmic
 |-  ( R ~=m S <-> ( R LMIso S ) =/= (/) )
2 n0
 |-  ( ( R LMIso S ) =/= (/) <-> E. f f e. ( R LMIso S ) )
3 1 2 bitri
 |-  ( R ~=m S <-> E. f f e. ( R LMIso S ) )
4 lmimlmhm
 |-  ( f e. ( R LMIso S ) -> f e. ( R LMHom S ) )
5 lmhmlmod1
 |-  ( f e. ( R LMHom S ) -> R e. LMod )
6 4 5 syl
 |-  ( f e. ( R LMIso S ) -> R e. LMod )
7 6 exlimiv
 |-  ( E. f f e. ( R LMIso S ) -> R e. LMod )
8 3 7 sylbi
 |-  ( R ~=m S -> R e. LMod )