Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
|- P = ( Base ` G ) |
2 |
|
ismid.d |
|- .- = ( dist ` G ) |
3 |
|
ismid.i |
|- I = ( Itv ` G ) |
4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
6 |
|
lmif.m |
|- M = ( ( lInvG ` G ) ` D ) |
7 |
|
lmif.l |
|- L = ( LineG ` G ) |
8 |
|
lmif.d |
|- ( ph -> D e. ran L ) |
9 |
|
lmicl.1 |
|- ( ph -> A e. P ) |
10 |
|
islmib.b |
|- ( ph -> B e. P ) |
11 |
|
lmicom.1 |
|- ( ph -> ( M ` A ) = B ) |
12 |
1 2 3 4 5 9 10
|
midcom |
|- ( ph -> ( A ( midG ` G ) B ) = ( B ( midG ` G ) A ) ) |
13 |
11
|
eqcomd |
|- ( ph -> B = ( M ` A ) ) |
14 |
1 2 3 4 5 6 7 8 9 10
|
islmib |
|- ( ph -> ( B = ( M ` A ) <-> ( ( A ( midG ` G ) B ) e. D /\ ( D ( perpG ` G ) ( A L B ) \/ A = B ) ) ) ) |
15 |
13 14
|
mpbid |
|- ( ph -> ( ( A ( midG ` G ) B ) e. D /\ ( D ( perpG ` G ) ( A L B ) \/ A = B ) ) ) |
16 |
15
|
simpld |
|- ( ph -> ( A ( midG ` G ) B ) e. D ) |
17 |
12 16
|
eqeltrrd |
|- ( ph -> ( B ( midG ` G ) A ) e. D ) |
18 |
15
|
simprd |
|- ( ph -> ( D ( perpG ` G ) ( A L B ) \/ A = B ) ) |
19 |
18
|
orcomd |
|- ( ph -> ( A = B \/ D ( perpG ` G ) ( A L B ) ) ) |
20 |
19
|
ord |
|- ( ph -> ( -. A = B -> D ( perpG ` G ) ( A L B ) ) ) |
21 |
4
|
adantr |
|- ( ( ph /\ -. A = B ) -> G e. TarskiG ) |
22 |
9
|
adantr |
|- ( ( ph /\ -. A = B ) -> A e. P ) |
23 |
10
|
adantr |
|- ( ( ph /\ -. A = B ) -> B e. P ) |
24 |
|
simpr |
|- ( ( ph /\ -. A = B ) -> -. A = B ) |
25 |
24
|
neqned |
|- ( ( ph /\ -. A = B ) -> A =/= B ) |
26 |
1 3 7 21 22 23 25
|
tglinecom |
|- ( ( ph /\ -. A = B ) -> ( A L B ) = ( B L A ) ) |
27 |
26
|
breq2d |
|- ( ( ph /\ -. A = B ) -> ( D ( perpG ` G ) ( A L B ) <-> D ( perpG ` G ) ( B L A ) ) ) |
28 |
27
|
pm5.74da |
|- ( ph -> ( ( -. A = B -> D ( perpG ` G ) ( A L B ) ) <-> ( -. A = B -> D ( perpG ` G ) ( B L A ) ) ) ) |
29 |
20 28
|
mpbid |
|- ( ph -> ( -. A = B -> D ( perpG ` G ) ( B L A ) ) ) |
30 |
29
|
orrd |
|- ( ph -> ( A = B \/ D ( perpG ` G ) ( B L A ) ) ) |
31 |
30
|
orcomd |
|- ( ph -> ( D ( perpG ` G ) ( B L A ) \/ A = B ) ) |
32 |
|
eqcom |
|- ( A = B <-> B = A ) |
33 |
32
|
orbi2i |
|- ( ( D ( perpG ` G ) ( B L A ) \/ A = B ) <-> ( D ( perpG ` G ) ( B L A ) \/ B = A ) ) |
34 |
31 33
|
sylib |
|- ( ph -> ( D ( perpG ` G ) ( B L A ) \/ B = A ) ) |
35 |
1 2 3 4 5 6 7 8 10 9
|
islmib |
|- ( ph -> ( A = ( M ` B ) <-> ( ( B ( midG ` G ) A ) e. D /\ ( D ( perpG ` G ) ( B L A ) \/ B = A ) ) ) ) |
36 |
17 34 35
|
mpbir2and |
|- ( ph -> A = ( M ` B ) ) |
37 |
36
|
eqcomd |
|- ( ph -> ( M ` B ) = A ) |