Metamath Proof Explorer


Theorem lmicqusker

Description: The image H of a module homomorphism F is isomorphic with the quotient module Q over F 's kernel K . This is part of what is sometimes called the first isomorphism theorem for modules. (Contributed by Thierry Arnoux, 10-Mar-2025)

Ref Expression
Hypotheses lmhmqusker.1
|- .0. = ( 0g ` H )
lmhmqusker.f
|- ( ph -> F e. ( G LMHom H ) )
lmhmqusker.k
|- K = ( `' F " { .0. } )
lmhmqusker.q
|- Q = ( G /s ( G ~QG K ) )
lmhmqusker.s
|- ( ph -> ran F = ( Base ` H ) )
Assertion lmicqusker
|- ( ph -> Q ~=m H )

Proof

Step Hyp Ref Expression
1 lmhmqusker.1
 |-  .0. = ( 0g ` H )
2 lmhmqusker.f
 |-  ( ph -> F e. ( G LMHom H ) )
3 lmhmqusker.k
 |-  K = ( `' F " { .0. } )
4 lmhmqusker.q
 |-  Q = ( G /s ( G ~QG K ) )
5 lmhmqusker.s
 |-  ( ph -> ran F = ( Base ` H ) )
6 imaeq2
 |-  ( p = q -> ( F " p ) = ( F " q ) )
7 6 unieqd
 |-  ( p = q -> U. ( F " p ) = U. ( F " q ) )
8 7 cbvmptv
 |-  ( p e. ( Base ` Q ) |-> U. ( F " p ) ) = ( q e. ( Base ` Q ) |-> U. ( F " q ) )
9 1 2 3 4 5 8 lmhmqusker
 |-  ( ph -> ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q LMIso H ) )
10 brlmici
 |-  ( ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q LMIso H ) -> Q ~=m H )
11 9 10 syl
 |-  ( ph -> Q ~=m H )