Description: The image H of a module homomorphism F is isomorphic with the quotient module Q over F 's kernel K . This is part of what is sometimes called the first isomorphism theorem for modules. (Contributed by Thierry Arnoux, 10-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmhmqusker.1 | |- .0. = ( 0g ` H ) |
|
lmhmqusker.f | |- ( ph -> F e. ( G LMHom H ) ) |
||
lmhmqusker.k | |- K = ( `' F " { .0. } ) |
||
lmhmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
||
lmhmqusker.s | |- ( ph -> ran F = ( Base ` H ) ) |
||
Assertion | lmicqusker | |- ( ph -> Q ~=m H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmqusker.1 | |- .0. = ( 0g ` H ) |
|
2 | lmhmqusker.f | |- ( ph -> F e. ( G LMHom H ) ) |
|
3 | lmhmqusker.k | |- K = ( `' F " { .0. } ) |
|
4 | lmhmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
|
5 | lmhmqusker.s | |- ( ph -> ran F = ( Base ` H ) ) |
|
6 | imaeq2 | |- ( p = q -> ( F " p ) = ( F " q ) ) |
|
7 | 6 | unieqd | |- ( p = q -> U. ( F " p ) = U. ( F " q ) ) |
8 | 7 | cbvmptv | |- ( p e. ( Base ` Q ) |-> U. ( F " p ) ) = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
9 | 1 2 3 4 5 8 | lmhmqusker | |- ( ph -> ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q LMIso H ) ) |
10 | brlmici | |- ( ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q LMIso H ) -> Q ~=m H ) |
|
11 | 9 10 | syl | |- ( ph -> Q ~=m H ) |