Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
|- P = ( Base ` G ) |
2 |
|
ismid.d |
|- .- = ( dist ` G ) |
3 |
|
ismid.i |
|- I = ( Itv ` G ) |
4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
6 |
|
lmif.m |
|- M = ( ( lInvG ` G ) ` D ) |
7 |
|
lmif.l |
|- L = ( LineG ` G ) |
8 |
|
lmif.d |
|- ( ph -> D e. ran L ) |
9 |
1 2 3 4 5 6 7 8
|
lmif |
|- ( ph -> M : P --> P ) |
10 |
9
|
ffnd |
|- ( ph -> M Fn P ) |
11 |
4
|
adantr |
|- ( ( ph /\ b e. P ) -> G e. TarskiG ) |
12 |
5
|
adantr |
|- ( ( ph /\ b e. P ) -> G TarskiGDim>= 2 ) |
13 |
8
|
adantr |
|- ( ( ph /\ b e. P ) -> D e. ran L ) |
14 |
|
simpr |
|- ( ( ph /\ b e. P ) -> b e. P ) |
15 |
1 2 3 11 12 6 7 13 14
|
lmilmi |
|- ( ( ph /\ b e. P ) -> ( M ` ( M ` b ) ) = b ) |
16 |
15
|
ralrimiva |
|- ( ph -> A. b e. P ( M ` ( M ` b ) ) = b ) |
17 |
|
nvocnv |
|- ( ( M : P --> P /\ A. b e. P ( M ` ( M ` b ) ) = b ) -> `' M = M ) |
18 |
9 16 17
|
syl2anc |
|- ( ph -> `' M = M ) |
19 |
|
nvof1o |
|- ( ( M Fn P /\ `' M = M ) -> M : P -1-1-onto-> P ) |
20 |
10 18 19
|
syl2anc |
|- ( ph -> M : P -1-1-onto-> P ) |