Metamath Proof Explorer


Theorem lmif1o

Description: The line mirroring function M is a bijection. Theorem 10.9 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p
|- P = ( Base ` G )
ismid.d
|- .- = ( dist ` G )
ismid.i
|- I = ( Itv ` G )
ismid.g
|- ( ph -> G e. TarskiG )
ismid.1
|- ( ph -> G TarskiGDim>= 2 )
lmif.m
|- M = ( ( lInvG ` G ) ` D )
lmif.l
|- L = ( LineG ` G )
lmif.d
|- ( ph -> D e. ran L )
Assertion lmif1o
|- ( ph -> M : P -1-1-onto-> P )

Proof

Step Hyp Ref Expression
1 ismid.p
 |-  P = ( Base ` G )
2 ismid.d
 |-  .- = ( dist ` G )
3 ismid.i
 |-  I = ( Itv ` G )
4 ismid.g
 |-  ( ph -> G e. TarskiG )
5 ismid.1
 |-  ( ph -> G TarskiGDim>= 2 )
6 lmif.m
 |-  M = ( ( lInvG ` G ) ` D )
7 lmif.l
 |-  L = ( LineG ` G )
8 lmif.d
 |-  ( ph -> D e. ran L )
9 1 2 3 4 5 6 7 8 lmif
 |-  ( ph -> M : P --> P )
10 9 ffnd
 |-  ( ph -> M Fn P )
11 4 adantr
 |-  ( ( ph /\ b e. P ) -> G e. TarskiG )
12 5 adantr
 |-  ( ( ph /\ b e. P ) -> G TarskiGDim>= 2 )
13 8 adantr
 |-  ( ( ph /\ b e. P ) -> D e. ran L )
14 simpr
 |-  ( ( ph /\ b e. P ) -> b e. P )
15 1 2 3 11 12 6 7 13 14 lmilmi
 |-  ( ( ph /\ b e. P ) -> ( M ` ( M ` b ) ) = b )
16 15 ralrimiva
 |-  ( ph -> A. b e. P ( M ` ( M ` b ) ) = b )
17 nvocnv
 |-  ( ( M : P --> P /\ A. b e. P ( M ` ( M ` b ) ) = b ) -> `' M = M )
18 9 16 17 syl2anc
 |-  ( ph -> `' M = M )
19 nvof1o
 |-  ( ( M Fn P /\ `' M = M ) -> M : P -1-1-onto-> P )
20 10 18 19 syl2anc
 |-  ( ph -> M : P -1-1-onto-> P )