Metamath Proof Explorer


Theorem lmiinv

Description: The invariants of the line mirroring lie on the mirror line. Theorem 10.8 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p
|- P = ( Base ` G )
ismid.d
|- .- = ( dist ` G )
ismid.i
|- I = ( Itv ` G )
ismid.g
|- ( ph -> G e. TarskiG )
ismid.1
|- ( ph -> G TarskiGDim>= 2 )
lmif.m
|- M = ( ( lInvG ` G ) ` D )
lmif.l
|- L = ( LineG ` G )
lmif.d
|- ( ph -> D e. ran L )
lmicl.1
|- ( ph -> A e. P )
Assertion lmiinv
|- ( ph -> ( ( M ` A ) = A <-> A e. D ) )

Proof

Step Hyp Ref Expression
1 ismid.p
 |-  P = ( Base ` G )
2 ismid.d
 |-  .- = ( dist ` G )
3 ismid.i
 |-  I = ( Itv ` G )
4 ismid.g
 |-  ( ph -> G e. TarskiG )
5 ismid.1
 |-  ( ph -> G TarskiGDim>= 2 )
6 lmif.m
 |-  M = ( ( lInvG ` G ) ` D )
7 lmif.l
 |-  L = ( LineG ` G )
8 lmif.d
 |-  ( ph -> D e. ran L )
9 lmicl.1
 |-  ( ph -> A e. P )
10 1 2 3 4 5 6 7 8 9 9 islmib
 |-  ( ph -> ( A = ( M ` A ) <-> ( ( A ( midG ` G ) A ) e. D /\ ( D ( perpG ` G ) ( A L A ) \/ A = A ) ) ) )
11 eqcom
 |-  ( A = ( M ` A ) <-> ( M ` A ) = A )
12 11 a1i
 |-  ( ph -> ( A = ( M ` A ) <-> ( M ` A ) = A ) )
13 eqidd
 |-  ( ph -> A = A )
14 13 olcd
 |-  ( ph -> ( D ( perpG ` G ) ( A L A ) \/ A = A ) )
15 14 biantrud
 |-  ( ph -> ( ( A ( midG ` G ) A ) e. D <-> ( ( A ( midG ` G ) A ) e. D /\ ( D ( perpG ` G ) ( A L A ) \/ A = A ) ) ) )
16 1 2 3 4 5 9 9 midid
 |-  ( ph -> ( A ( midG ` G ) A ) = A )
17 16 eleq1d
 |-  ( ph -> ( ( A ( midG ` G ) A ) e. D <-> A e. D ) )
18 15 17 bitr3d
 |-  ( ph -> ( ( ( A ( midG ` G ) A ) e. D /\ ( D ( perpG ` G ) ( A L A ) \/ A = A ) ) <-> A e. D ) )
19 10 12 18 3bitr3d
 |-  ( ph -> ( ( M ` A ) = A <-> A e. D ) )