| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
|- P = ( Base ` G ) |
| 2 |
|
ismid.d |
|- .- = ( dist ` G ) |
| 3 |
|
ismid.i |
|- I = ( Itv ` G ) |
| 4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 6 |
|
lmif.m |
|- M = ( ( lInvG ` G ) ` D ) |
| 7 |
|
lmif.l |
|- L = ( LineG ` G ) |
| 8 |
|
lmif.d |
|- ( ph -> D e. ran L ) |
| 9 |
|
lmicl.1 |
|- ( ph -> A e. P ) |
| 10 |
1 2 3 4 5 6 7 8 9 9
|
islmib |
|- ( ph -> ( A = ( M ` A ) <-> ( ( A ( midG ` G ) A ) e. D /\ ( D ( perpG ` G ) ( A L A ) \/ A = A ) ) ) ) |
| 11 |
|
eqcom |
|- ( A = ( M ` A ) <-> ( M ` A ) = A ) |
| 12 |
11
|
a1i |
|- ( ph -> ( A = ( M ` A ) <-> ( M ` A ) = A ) ) |
| 13 |
|
eqidd |
|- ( ph -> A = A ) |
| 14 |
13
|
olcd |
|- ( ph -> ( D ( perpG ` G ) ( A L A ) \/ A = A ) ) |
| 15 |
14
|
biantrud |
|- ( ph -> ( ( A ( midG ` G ) A ) e. D <-> ( ( A ( midG ` G ) A ) e. D /\ ( D ( perpG ` G ) ( A L A ) \/ A = A ) ) ) ) |
| 16 |
1 2 3 4 5 9 9
|
midid |
|- ( ph -> ( A ( midG ` G ) A ) = A ) |
| 17 |
16
|
eleq1d |
|- ( ph -> ( ( A ( midG ` G ) A ) e. D <-> A e. D ) ) |
| 18 |
15 17
|
bitr3d |
|- ( ph -> ( ( ( A ( midG ` G ) A ) e. D /\ ( D ( perpG ` G ) ( A L A ) \/ A = A ) ) <-> A e. D ) ) |
| 19 |
10 12 18
|
3bitr3d |
|- ( ph -> ( ( M ` A ) = A <-> A e. D ) ) |