| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
|- P = ( Base ` G ) |
| 2 |
|
ismid.d |
|- .- = ( dist ` G ) |
| 3 |
|
ismid.i |
|- I = ( Itv ` G ) |
| 4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 6 |
|
lmif.m |
|- M = ( ( lInvG ` G ) ` D ) |
| 7 |
|
lmif.l |
|- L = ( LineG ` G ) |
| 8 |
|
lmif.d |
|- ( ph -> D e. ran L ) |
| 9 |
|
lmiiso.1 |
|- ( ph -> A e. P ) |
| 10 |
|
lmiiso.2 |
|- ( ph -> B e. P ) |
| 11 |
|
eqid |
|- ( ( pInvG ` G ) ` ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) ) = ( ( pInvG ` G ) ` ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) ) |
| 12 |
|
eqid |
|- ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) = ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) |
| 13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
lmiisolem |
|- ( ph -> ( ( M ` A ) .- ( M ` B ) ) = ( A .- B ) ) |