Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
|- P = ( Base ` G ) |
2 |
|
ismid.d |
|- .- = ( dist ` G ) |
3 |
|
ismid.i |
|- I = ( Itv ` G ) |
4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
6 |
|
lmif.m |
|- M = ( ( lInvG ` G ) ` D ) |
7 |
|
lmif.l |
|- L = ( LineG ` G ) |
8 |
|
lmif.d |
|- ( ph -> D e. ran L ) |
9 |
|
lmiiso.1 |
|- ( ph -> A e. P ) |
10 |
|
lmiiso.2 |
|- ( ph -> B e. P ) |
11 |
|
lmiisolem.s |
|- S = ( ( pInvG ` G ) ` Z ) |
12 |
|
lmiisolem.z |
|- Z = ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) |
13 |
4
|
adantr |
|- ( ( ph /\ ( S ` A ) = Z ) -> G e. TarskiG ) |
14 |
1 2 3 4 5 6 7 8 9
|
lmicl |
|- ( ph -> ( M ` A ) e. P ) |
15 |
1 2 3 4 5 9 14
|
midcl |
|- ( ph -> ( A ( midG ` G ) ( M ` A ) ) e. P ) |
16 |
1 2 3 4 5 6 7 8 10
|
lmicl |
|- ( ph -> ( M ` B ) e. P ) |
17 |
1 2 3 4 5 10 16
|
midcl |
|- ( ph -> ( B ( midG ` G ) ( M ` B ) ) e. P ) |
18 |
1 2 3 4 5 15 17
|
midcl |
|- ( ph -> ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) e. P ) |
19 |
12 18
|
eqeltrid |
|- ( ph -> Z e. P ) |
20 |
19
|
adantr |
|- ( ( ph /\ ( S ` A ) = Z ) -> Z e. P ) |
21 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
22 |
1 2 3 7 21 4 19 11 9
|
mircl |
|- ( ph -> ( S ` A ) e. P ) |
23 |
22
|
adantr |
|- ( ( ph /\ ( S ` A ) = Z ) -> ( S ` A ) e. P ) |
24 |
9
|
adantr |
|- ( ( ph /\ ( S ` A ) = Z ) -> A e. P ) |
25 |
1 2 3 7 21 13 20 11 24
|
mircgr |
|- ( ( ph /\ ( S ` A ) = Z ) -> ( Z .- ( S ` A ) ) = ( Z .- A ) ) |
26 |
|
simpr |
|- ( ( ph /\ ( S ` A ) = Z ) -> ( S ` A ) = Z ) |
27 |
26
|
eqcomd |
|- ( ( ph /\ ( S ` A ) = Z ) -> Z = ( S ` A ) ) |
28 |
1 2 3 13 20 23 20 24 25 27
|
tgcgreq |
|- ( ( ph /\ ( S ` A ) = Z ) -> Z = A ) |
29 |
|
simpr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) |
30 |
29
|
oveq2d |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( A ( midG ` G ) ( M ` A ) ) ) = ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) ) |
31 |
12 30
|
eqtr4id |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> Z = ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( A ( midG ` G ) ( M ` A ) ) ) ) |
32 |
4
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> G e. TarskiG ) |
33 |
5
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> G TarskiGDim>= 2 ) |
34 |
15
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. P ) |
35 |
1 2 3 32 33 34 34
|
midid |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( A ( midG ` G ) ( M ` A ) ) ) = ( A ( midG ` G ) ( M ` A ) ) ) |
36 |
31 35
|
eqtrd |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> Z = ( A ( midG ` G ) ( M ` A ) ) ) |
37 |
|
eqidd |
|- ( ph -> ( M ` A ) = ( M ` A ) ) |
38 |
1 2 3 4 5 6 7 8 9 14
|
islmib |
|- ( ph -> ( ( M ` A ) = ( M ` A ) <-> ( ( A ( midG ` G ) ( M ` A ) ) e. D /\ ( D ( perpG ` G ) ( A L ( M ` A ) ) \/ A = ( M ` A ) ) ) ) ) |
39 |
37 38
|
mpbid |
|- ( ph -> ( ( A ( midG ` G ) ( M ` A ) ) e. D /\ ( D ( perpG ` G ) ( A L ( M ` A ) ) \/ A = ( M ` A ) ) ) ) |
40 |
39
|
simpld |
|- ( ph -> ( A ( midG ` G ) ( M ` A ) ) e. D ) |
41 |
40
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. D ) |
42 |
36 41
|
eqeltrd |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> Z e. D ) |
43 |
4
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> G e. TarskiG ) |
44 |
15
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. P ) |
45 |
17
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. P ) |
46 |
19
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> Z e. P ) |
47 |
|
simpr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) |
48 |
1 2 3 4 5 15 17
|
midbtwn |
|- ( ph -> ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) e. ( ( A ( midG ` G ) ( M ` A ) ) I ( B ( midG ` G ) ( M ` B ) ) ) ) |
49 |
12 48
|
eqeltrid |
|- ( ph -> Z e. ( ( A ( midG ` G ) ( M ` A ) ) I ( B ( midG ` G ) ( M ` B ) ) ) ) |
50 |
49
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> Z e. ( ( A ( midG ` G ) ( M ` A ) ) I ( B ( midG ` G ) ( M ` B ) ) ) ) |
51 |
1 3 7 43 44 45 46 47 50
|
btwnlng1 |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> Z e. ( ( A ( midG ` G ) ( M ` A ) ) L ( B ( midG ` G ) ( M ` B ) ) ) ) |
52 |
8
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> D e. ran L ) |
53 |
40
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. D ) |
54 |
|
eqidd |
|- ( ph -> ( M ` B ) = ( M ` B ) ) |
55 |
1 2 3 4 5 6 7 8 10 16
|
islmib |
|- ( ph -> ( ( M ` B ) = ( M ` B ) <-> ( ( B ( midG ` G ) ( M ` B ) ) e. D /\ ( D ( perpG ` G ) ( B L ( M ` B ) ) \/ B = ( M ` B ) ) ) ) ) |
56 |
54 55
|
mpbid |
|- ( ph -> ( ( B ( midG ` G ) ( M ` B ) ) e. D /\ ( D ( perpG ` G ) ( B L ( M ` B ) ) \/ B = ( M ` B ) ) ) ) |
57 |
56
|
simpld |
|- ( ph -> ( B ( midG ` G ) ( M ` B ) ) e. D ) |
58 |
57
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. D ) |
59 |
1 3 7 43 44 45 47 47 52 53 58
|
tglinethru |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> D = ( ( A ( midG ` G ) ( M ` A ) ) L ( B ( midG ` G ) ( M ` B ) ) ) ) |
60 |
51 59
|
eleqtrrd |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> Z e. D ) |
61 |
42 60
|
pm2.61dane |
|- ( ph -> Z e. D ) |
62 |
61
|
adantr |
|- ( ( ph /\ ( S ` A ) = Z ) -> Z e. D ) |
63 |
28 62
|
eqeltrrd |
|- ( ( ph /\ ( S ` A ) = Z ) -> A e. D ) |
64 |
1 2 3 4 5 6 7 8 9
|
lmiinv |
|- ( ph -> ( ( M ` A ) = A <-> A e. D ) ) |
65 |
64
|
biimpar |
|- ( ( ph /\ A e. D ) -> ( M ` A ) = A ) |
66 |
63 65
|
syldan |
|- ( ( ph /\ ( S ` A ) = Z ) -> ( M ` A ) = A ) |
67 |
66 28
|
eqtr4d |
|- ( ( ph /\ ( S ` A ) = Z ) -> ( M ` A ) = Z ) |
68 |
67
|
oveq1d |
|- ( ( ph /\ ( S ` A ) = Z ) -> ( ( M ` A ) .- ( M ` B ) ) = ( Z .- ( M ` B ) ) ) |
69 |
|
eqidd |
|- ( ( ph /\ B = ( M ` B ) ) -> Z = Z ) |
70 |
4
|
adantr |
|- ( ( ph /\ B = ( M ` B ) ) -> G e. TarskiG ) |
71 |
10
|
adantr |
|- ( ( ph /\ B = ( M ` B ) ) -> B e. P ) |
72 |
17
|
adantr |
|- ( ( ph /\ B = ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. P ) |
73 |
1 2 3 4 5 10 16
|
midbtwn |
|- ( ph -> ( B ( midG ` G ) ( M ` B ) ) e. ( B I ( M ` B ) ) ) |
74 |
73
|
adantr |
|- ( ( ph /\ B = ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. ( B I ( M ` B ) ) ) |
75 |
|
simpr |
|- ( ( ph /\ B = ( M ` B ) ) -> B = ( M ` B ) ) |
76 |
75
|
oveq2d |
|- ( ( ph /\ B = ( M ` B ) ) -> ( B I B ) = ( B I ( M ` B ) ) ) |
77 |
74 76
|
eleqtrrd |
|- ( ( ph /\ B = ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. ( B I B ) ) |
78 |
1 2 3 70 71 72 77
|
axtgbtwnid |
|- ( ( ph /\ B = ( M ` B ) ) -> B = ( B ( midG ` G ) ( M ` B ) ) ) |
79 |
|
eqidd |
|- ( ( ph /\ B = ( M ` B ) ) -> B = B ) |
80 |
69 78 79
|
s3eqd |
|- ( ( ph /\ B = ( M ` B ) ) -> <" Z B B "> = <" Z ( B ( midG ` G ) ( M ` B ) ) B "> ) |
81 |
1 2 3 7 21 4 19 10 10
|
ragtrivb |
|- ( ph -> <" Z B B "> e. ( raG ` G ) ) |
82 |
81
|
adantr |
|- ( ( ph /\ B = ( M ` B ) ) -> <" Z B B "> e. ( raG ` G ) ) |
83 |
80 82
|
eqeltrrd |
|- ( ( ph /\ B = ( M ` B ) ) -> <" Z ( B ( midG ` G ) ( M ` B ) ) B "> e. ( raG ` G ) ) |
84 |
4
|
adantr |
|- ( ( ph /\ B =/= ( M ` B ) ) -> G e. TarskiG ) |
85 |
61
|
adantr |
|- ( ( ph /\ B =/= ( M ` B ) ) -> Z e. D ) |
86 |
57
|
adantr |
|- ( ( ph /\ B =/= ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. D ) |
87 |
10
|
adantr |
|- ( ( ph /\ B =/= ( M ` B ) ) -> B e. P ) |
88 |
|
df-ne |
|- ( B =/= ( M ` B ) <-> -. B = ( M ` B ) ) |
89 |
56
|
simprd |
|- ( ph -> ( D ( perpG ` G ) ( B L ( M ` B ) ) \/ B = ( M ` B ) ) ) |
90 |
89
|
orcomd |
|- ( ph -> ( B = ( M ` B ) \/ D ( perpG ` G ) ( B L ( M ` B ) ) ) ) |
91 |
90
|
orcanai |
|- ( ( ph /\ -. B = ( M ` B ) ) -> D ( perpG ` G ) ( B L ( M ` B ) ) ) |
92 |
88 91
|
sylan2b |
|- ( ( ph /\ B =/= ( M ` B ) ) -> D ( perpG ` G ) ( B L ( M ` B ) ) ) |
93 |
16
|
adantr |
|- ( ( ph /\ B =/= ( M ` B ) ) -> ( M ` B ) e. P ) |
94 |
|
simpr |
|- ( ( ph /\ B =/= ( M ` B ) ) -> B =/= ( M ` B ) ) |
95 |
17
|
adantr |
|- ( ( ph /\ B =/= ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. P ) |
96 |
4
|
adantr |
|- ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> G e. TarskiG ) |
97 |
10
|
adantr |
|- ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> B e. P ) |
98 |
16
|
adantr |
|- ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> ( M ` B ) e. P ) |
99 |
5
|
adantr |
|- ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> G TarskiGDim>= 2 ) |
100 |
|
simpr |
|- ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> ( B ( midG ` G ) ( M ` B ) ) = B ) |
101 |
1 2 3 96 99 97 98 100
|
midcgr |
|- ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> ( B .- B ) = ( B .- ( M ` B ) ) ) |
102 |
101
|
eqcomd |
|- ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> ( B .- ( M ` B ) ) = ( B .- B ) ) |
103 |
1 2 3 96 97 98 97 102
|
axtgcgrid |
|- ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> B = ( M ` B ) ) |
104 |
103
|
ex |
|- ( ph -> ( ( B ( midG ` G ) ( M ` B ) ) = B -> B = ( M ` B ) ) ) |
105 |
104
|
necon3d |
|- ( ph -> ( B =/= ( M ` B ) -> ( B ( midG ` G ) ( M ` B ) ) =/= B ) ) |
106 |
105
|
imp |
|- ( ( ph /\ B =/= ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) =/= B ) |
107 |
73
|
adantr |
|- ( ( ph /\ B =/= ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. ( B I ( M ` B ) ) ) |
108 |
1 3 7 84 87 93 95 94 107
|
btwnlng1 |
|- ( ( ph /\ B =/= ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. ( B L ( M ` B ) ) ) |
109 |
1 3 7 84 87 93 94 95 106 108
|
tglineelsb2 |
|- ( ( ph /\ B =/= ( M ` B ) ) -> ( B L ( M ` B ) ) = ( B L ( B ( midG ` G ) ( M ` B ) ) ) ) |
110 |
1 3 7 84 95 87 106
|
tglinecom |
|- ( ( ph /\ B =/= ( M ` B ) ) -> ( ( B ( midG ` G ) ( M ` B ) ) L B ) = ( B L ( B ( midG ` G ) ( M ` B ) ) ) ) |
111 |
109 110
|
eqtr4d |
|- ( ( ph /\ B =/= ( M ` B ) ) -> ( B L ( M ` B ) ) = ( ( B ( midG ` G ) ( M ` B ) ) L B ) ) |
112 |
92 111
|
breqtrd |
|- ( ( ph /\ B =/= ( M ` B ) ) -> D ( perpG ` G ) ( ( B ( midG ` G ) ( M ` B ) ) L B ) ) |
113 |
1 2 3 7 84 85 86 87 112
|
perpdrag |
|- ( ( ph /\ B =/= ( M ` B ) ) -> <" Z ( B ( midG ` G ) ( M ` B ) ) B "> e. ( raG ` G ) ) |
114 |
83 113
|
pm2.61dane |
|- ( ph -> <" Z ( B ( midG ` G ) ( M ` B ) ) B "> e. ( raG ` G ) ) |
115 |
1 2 3 7 21 4 19 17 10
|
israg |
|- ( ph -> ( <" Z ( B ( midG ` G ) ( M ` B ) ) B "> e. ( raG ` G ) <-> ( Z .- B ) = ( Z .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) ) ) ) |
116 |
114 115
|
mpbid |
|- ( ph -> ( Z .- B ) = ( Z .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) ) ) |
117 |
|
eqidd |
|- ( ph -> ( B ( midG ` G ) ( M ` B ) ) = ( B ( midG ` G ) ( M ` B ) ) ) |
118 |
1 2 3 4 5 10 16 21 17
|
ismidb |
|- ( ph -> ( ( M ` B ) = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) <-> ( B ( midG ` G ) ( M ` B ) ) = ( B ( midG ` G ) ( M ` B ) ) ) ) |
119 |
117 118
|
mpbird |
|- ( ph -> ( M ` B ) = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) ) |
120 |
119
|
oveq2d |
|- ( ph -> ( Z .- ( M ` B ) ) = ( Z .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) ) ) |
121 |
116 120
|
eqtr4d |
|- ( ph -> ( Z .- B ) = ( Z .- ( M ` B ) ) ) |
122 |
121
|
adantr |
|- ( ( ph /\ ( S ` A ) = Z ) -> ( Z .- B ) = ( Z .- ( M ` B ) ) ) |
123 |
28
|
oveq1d |
|- ( ( ph /\ ( S ` A ) = Z ) -> ( Z .- B ) = ( A .- B ) ) |
124 |
68 122 123
|
3eqtr2d |
|- ( ( ph /\ ( S ` A ) = Z ) -> ( ( M ` A ) .- ( M ` B ) ) = ( A .- B ) ) |
125 |
4
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> G e. TarskiG ) |
126 |
22
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( S ` A ) e. P ) |
127 |
19
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> Z e. P ) |
128 |
9
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> A e. P ) |
129 |
1 2 3 7 21 4 19 11 14
|
mircl |
|- ( ph -> ( S ` ( M ` A ) ) e. P ) |
130 |
129
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( S ` ( M ` A ) ) e. P ) |
131 |
14
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( M ` A ) e. P ) |
132 |
10
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> B e. P ) |
133 |
16
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( M ` B ) e. P ) |
134 |
|
simpr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( S ` A ) =/= Z ) |
135 |
1 2 3 7 21 125 127 11 128
|
mirbtwn |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> Z e. ( ( S ` A ) I A ) ) |
136 |
1 2 3 7 21 125 127 11 131
|
mirbtwn |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> Z e. ( ( S ` ( M ` A ) ) I ( M ` A ) ) ) |
137 |
|
eqidd |
|- ( ( ph /\ A = ( M ` A ) ) -> Z = Z ) |
138 |
4
|
adantr |
|- ( ( ph /\ A = ( M ` A ) ) -> G e. TarskiG ) |
139 |
9
|
adantr |
|- ( ( ph /\ A = ( M ` A ) ) -> A e. P ) |
140 |
15
|
adantr |
|- ( ( ph /\ A = ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. P ) |
141 |
1 2 3 4 5 9 14
|
midbtwn |
|- ( ph -> ( A ( midG ` G ) ( M ` A ) ) e. ( A I ( M ` A ) ) ) |
142 |
141
|
adantr |
|- ( ( ph /\ A = ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. ( A I ( M ` A ) ) ) |
143 |
|
simpr |
|- ( ( ph /\ A = ( M ` A ) ) -> A = ( M ` A ) ) |
144 |
143
|
oveq2d |
|- ( ( ph /\ A = ( M ` A ) ) -> ( A I A ) = ( A I ( M ` A ) ) ) |
145 |
142 144
|
eleqtrrd |
|- ( ( ph /\ A = ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. ( A I A ) ) |
146 |
1 2 3 138 139 140 145
|
axtgbtwnid |
|- ( ( ph /\ A = ( M ` A ) ) -> A = ( A ( midG ` G ) ( M ` A ) ) ) |
147 |
|
eqidd |
|- ( ( ph /\ A = ( M ` A ) ) -> A = A ) |
148 |
137 146 147
|
s3eqd |
|- ( ( ph /\ A = ( M ` A ) ) -> <" Z A A "> = <" Z ( A ( midG ` G ) ( M ` A ) ) A "> ) |
149 |
1 2 3 7 21 4 19 9 9
|
ragtrivb |
|- ( ph -> <" Z A A "> e. ( raG ` G ) ) |
150 |
149
|
adantr |
|- ( ( ph /\ A = ( M ` A ) ) -> <" Z A A "> e. ( raG ` G ) ) |
151 |
148 150
|
eqeltrrd |
|- ( ( ph /\ A = ( M ` A ) ) -> <" Z ( A ( midG ` G ) ( M ` A ) ) A "> e. ( raG ` G ) ) |
152 |
4
|
adantr |
|- ( ( ph /\ A =/= ( M ` A ) ) -> G e. TarskiG ) |
153 |
61
|
adantr |
|- ( ( ph /\ A =/= ( M ` A ) ) -> Z e. D ) |
154 |
40
|
adantr |
|- ( ( ph /\ A =/= ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. D ) |
155 |
9
|
adantr |
|- ( ( ph /\ A =/= ( M ` A ) ) -> A e. P ) |
156 |
|
df-ne |
|- ( A =/= ( M ` A ) <-> -. A = ( M ` A ) ) |
157 |
39
|
simprd |
|- ( ph -> ( D ( perpG ` G ) ( A L ( M ` A ) ) \/ A = ( M ` A ) ) ) |
158 |
157
|
orcomd |
|- ( ph -> ( A = ( M ` A ) \/ D ( perpG ` G ) ( A L ( M ` A ) ) ) ) |
159 |
158
|
orcanai |
|- ( ( ph /\ -. A = ( M ` A ) ) -> D ( perpG ` G ) ( A L ( M ` A ) ) ) |
160 |
156 159
|
sylan2b |
|- ( ( ph /\ A =/= ( M ` A ) ) -> D ( perpG ` G ) ( A L ( M ` A ) ) ) |
161 |
14
|
adantr |
|- ( ( ph /\ A =/= ( M ` A ) ) -> ( M ` A ) e. P ) |
162 |
|
simpr |
|- ( ( ph /\ A =/= ( M ` A ) ) -> A =/= ( M ` A ) ) |
163 |
15
|
adantr |
|- ( ( ph /\ A =/= ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. P ) |
164 |
4
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> G e. TarskiG ) |
165 |
9
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> A e. P ) |
166 |
14
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> ( M ` A ) e. P ) |
167 |
5
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> G TarskiGDim>= 2 ) |
168 |
|
simpr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> ( A ( midG ` G ) ( M ` A ) ) = A ) |
169 |
1 2 3 164 167 165 166 168
|
midcgr |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> ( A .- A ) = ( A .- ( M ` A ) ) ) |
170 |
169
|
eqcomd |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> ( A .- ( M ` A ) ) = ( A .- A ) ) |
171 |
1 2 3 164 165 166 165 170
|
axtgcgrid |
|- ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> A = ( M ` A ) ) |
172 |
171
|
ex |
|- ( ph -> ( ( A ( midG ` G ) ( M ` A ) ) = A -> A = ( M ` A ) ) ) |
173 |
172
|
necon3d |
|- ( ph -> ( A =/= ( M ` A ) -> ( A ( midG ` G ) ( M ` A ) ) =/= A ) ) |
174 |
173
|
imp |
|- ( ( ph /\ A =/= ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) =/= A ) |
175 |
141
|
adantr |
|- ( ( ph /\ A =/= ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. ( A I ( M ` A ) ) ) |
176 |
1 3 7 152 155 161 163 162 175
|
btwnlng1 |
|- ( ( ph /\ A =/= ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. ( A L ( M ` A ) ) ) |
177 |
1 3 7 152 155 161 162 163 174 176
|
tglineelsb2 |
|- ( ( ph /\ A =/= ( M ` A ) ) -> ( A L ( M ` A ) ) = ( A L ( A ( midG ` G ) ( M ` A ) ) ) ) |
178 |
1 3 7 152 163 155 174
|
tglinecom |
|- ( ( ph /\ A =/= ( M ` A ) ) -> ( ( A ( midG ` G ) ( M ` A ) ) L A ) = ( A L ( A ( midG ` G ) ( M ` A ) ) ) ) |
179 |
177 178
|
eqtr4d |
|- ( ( ph /\ A =/= ( M ` A ) ) -> ( A L ( M ` A ) ) = ( ( A ( midG ` G ) ( M ` A ) ) L A ) ) |
180 |
160 179
|
breqtrd |
|- ( ( ph /\ A =/= ( M ` A ) ) -> D ( perpG ` G ) ( ( A ( midG ` G ) ( M ` A ) ) L A ) ) |
181 |
1 2 3 7 152 153 154 155 180
|
perpdrag |
|- ( ( ph /\ A =/= ( M ` A ) ) -> <" Z ( A ( midG ` G ) ( M ` A ) ) A "> e. ( raG ` G ) ) |
182 |
151 181
|
pm2.61dane |
|- ( ph -> <" Z ( A ( midG ` G ) ( M ` A ) ) A "> e. ( raG ` G ) ) |
183 |
1 2 3 7 21 4 19 15 9
|
israg |
|- ( ph -> ( <" Z ( A ( midG ` G ) ( M ` A ) ) A "> e. ( raG ` G ) <-> ( Z .- A ) = ( Z .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) ( M ` A ) ) ) ` A ) ) ) ) |
184 |
182 183
|
mpbid |
|- ( ph -> ( Z .- A ) = ( Z .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) ( M ` A ) ) ) ` A ) ) ) |
185 |
|
eqidd |
|- ( ph -> ( A ( midG ` G ) ( M ` A ) ) = ( A ( midG ` G ) ( M ` A ) ) ) |
186 |
1 2 3 4 5 9 14 21 15
|
ismidb |
|- ( ph -> ( ( M ` A ) = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) ( M ` A ) ) ) ` A ) <-> ( A ( midG ` G ) ( M ` A ) ) = ( A ( midG ` G ) ( M ` A ) ) ) ) |
187 |
185 186
|
mpbird |
|- ( ph -> ( M ` A ) = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) ( M ` A ) ) ) ` A ) ) |
188 |
187
|
oveq2d |
|- ( ph -> ( Z .- ( M ` A ) ) = ( Z .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) ( M ` A ) ) ) ` A ) ) ) |
189 |
184 188
|
eqtr4d |
|- ( ph -> ( Z .- A ) = ( Z .- ( M ` A ) ) ) |
190 |
1 2 3 7 21 4 19 11 9
|
mircgr |
|- ( ph -> ( Z .- ( S ` A ) ) = ( Z .- A ) ) |
191 |
1 2 3 7 21 4 19 11 14
|
mircgr |
|- ( ph -> ( Z .- ( S ` ( M ` A ) ) ) = ( Z .- ( M ` A ) ) ) |
192 |
189 190 191
|
3eqtr4d |
|- ( ph -> ( Z .- ( S ` A ) ) = ( Z .- ( S ` ( M ` A ) ) ) ) |
193 |
192
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( Z .- ( S ` A ) ) = ( Z .- ( S ` ( M ` A ) ) ) ) |
194 |
1 2 3 125 127 126 127 130 193
|
tgcgrcomlr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( ( S ` A ) .- Z ) = ( ( S ` ( M ` A ) ) .- Z ) ) |
195 |
189
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( Z .- A ) = ( Z .- ( M ` A ) ) ) |
196 |
11
|
fveq1i |
|- ( S ` ( A ( midG ` G ) ( M ` A ) ) ) = ( ( ( pInvG ` G ) ` Z ) ` ( A ( midG ` G ) ( M ` A ) ) ) |
197 |
1 2 3 4 5 9 14 11 19
|
mirmid |
|- ( ph -> ( ( S ` A ) ( midG ` G ) ( S ` ( M ` A ) ) ) = ( S ` ( A ( midG ` G ) ( M ` A ) ) ) ) |
198 |
12
|
eqcomi |
|- ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) = Z |
199 |
1 2 3 4 5 15 17 21 19
|
ismidb |
|- ( ph -> ( ( B ( midG ` G ) ( M ` B ) ) = ( ( ( pInvG ` G ) ` Z ) ` ( A ( midG ` G ) ( M ` A ) ) ) <-> ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) = Z ) ) |
200 |
198 199
|
mpbiri |
|- ( ph -> ( B ( midG ` G ) ( M ` B ) ) = ( ( ( pInvG ` G ) ` Z ) ` ( A ( midG ` G ) ( M ` A ) ) ) ) |
201 |
196 197 200
|
3eqtr4a |
|- ( ph -> ( ( S ` A ) ( midG ` G ) ( S ` ( M ` A ) ) ) = ( B ( midG ` G ) ( M ` B ) ) ) |
202 |
1 2 3 4 5 22 129 21 17
|
ismidb |
|- ( ph -> ( ( S ` ( M ` A ) ) = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` ( S ` A ) ) <-> ( ( S ` A ) ( midG ` G ) ( S ` ( M ` A ) ) ) = ( B ( midG ` G ) ( M ` B ) ) ) ) |
203 |
201 202
|
mpbird |
|- ( ph -> ( S ` ( M ` A ) ) = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` ( S ` A ) ) ) |
204 |
119 203
|
oveq12d |
|- ( ph -> ( ( M ` B ) .- ( S ` ( M ` A ) ) ) = ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` ( S ` A ) ) ) ) |
205 |
|
eqid |
|- ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) = ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) |
206 |
1 2 3 7 21 4 17 205 10 22
|
miriso |
|- ( ph -> ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` ( S ` A ) ) ) = ( B .- ( S ` A ) ) ) |
207 |
204 206
|
eqtr2d |
|- ( ph -> ( B .- ( S ` A ) ) = ( ( M ` B ) .- ( S ` ( M ` A ) ) ) ) |
208 |
207
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( B .- ( S ` A ) ) = ( ( M ` B ) .- ( S ` ( M ` A ) ) ) ) |
209 |
1 2 3 125 132 126 133 130 208
|
tgcgrcomlr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( ( S ` A ) .- B ) = ( ( S ` ( M ` A ) ) .- ( M ` B ) ) ) |
210 |
121
|
adantr |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( Z .- B ) = ( Z .- ( M ` B ) ) ) |
211 |
1 2 3 125 126 127 128 130 127 131 132 133 134 135 136 194 195 209 210
|
axtg5seg |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( A .- B ) = ( ( M ` A ) .- ( M ` B ) ) ) |
212 |
211
|
eqcomd |
|- ( ( ph /\ ( S ` A ) =/= Z ) -> ( ( M ` A ) .- ( M ` B ) ) = ( A .- B ) ) |
213 |
124 212
|
pm2.61dane |
|- ( ph -> ( ( M ` A ) .- ( M ` B ) ) = ( A .- B ) ) |