Description: Lemma for module isomorphisms. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmimfn | |- LMIso Fn ( LMod X. LMod ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-lmim |  |-  LMIso = ( s e. LMod , t e. LMod |-> { g e. ( s LMHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } ) | |
| 2 | ovex | |- ( s LMHom t ) e. _V | |
| 3 | 2 | rabex |  |-  { g e. ( s LMHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } e. _V | 
| 4 | 1 3 | fnmpoi | |- LMIso Fn ( LMod X. LMod ) |