Metamath Proof Explorer


Theorem lmimgim

Description: An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion lmimgim
|- ( F e. ( R LMIso S ) -> F e. ( R GrpIso S ) )

Proof

Step Hyp Ref Expression
1 lmimlmhm
 |-  ( F e. ( R LMIso S ) -> F e. ( R LMHom S ) )
2 lmghm
 |-  ( F e. ( R LMHom S ) -> F e. ( R GrpHom S ) )
3 1 2 syl
 |-  ( F e. ( R LMIso S ) -> F e. ( R GrpHom S ) )
4 eqid
 |-  ( Base ` R ) = ( Base ` R )
5 eqid
 |-  ( Base ` S ) = ( Base ` S )
6 4 5 lmimf1o
 |-  ( F e. ( R LMIso S ) -> F : ( Base ` R ) -1-1-onto-> ( Base ` S ) )
7 4 5 isgim
 |-  ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) )
8 3 6 7 sylanbrc
 |-  ( F e. ( R LMIso S ) -> F e. ( R GrpIso S ) )