| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
|- P = ( Base ` G ) |
| 2 |
|
ismid.d |
|- .- = ( dist ` G ) |
| 3 |
|
ismid.i |
|- I = ( Itv ` G ) |
| 4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 6 |
|
lmif.m |
|- M = ( ( lInvG ` G ) ` D ) |
| 7 |
|
lmif.l |
|- L = ( LineG ` G ) |
| 8 |
|
lmif.d |
|- ( ph -> D e. ran L ) |
| 9 |
|
lmicl.1 |
|- ( ph -> A e. P ) |
| 10 |
|
lmimid.s |
|- S = ( ( pInvG ` G ) ` B ) |
| 11 |
|
lmimid.r |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
| 12 |
|
lmimid.a |
|- ( ph -> A e. D ) |
| 13 |
|
lmimid.b |
|- ( ph -> B e. D ) |
| 14 |
|
lmimid.c |
|- ( ph -> C e. P ) |
| 15 |
|
lmimid.d |
|- ( ph -> A =/= B ) |
| 16 |
10
|
a1i |
|- ( ph -> S = ( ( pInvG ` G ) ` B ) ) |
| 17 |
16
|
fveq1d |
|- ( ph -> ( S ` C ) = ( ( ( pInvG ` G ) ` B ) ` C ) ) |
| 18 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 19 |
1 7 3 4 8 13
|
tglnpt |
|- ( ph -> B e. P ) |
| 20 |
1 2 3 7 18 4 19 10 14
|
mircl |
|- ( ph -> ( S ` C ) e. P ) |
| 21 |
1 2 3 4 5 14 20 18 19
|
ismidb |
|- ( ph -> ( ( S ` C ) = ( ( ( pInvG ` G ) ` B ) ` C ) <-> ( C ( midG ` G ) ( S ` C ) ) = B ) ) |
| 22 |
17 21
|
mpbid |
|- ( ph -> ( C ( midG ` G ) ( S ` C ) ) = B ) |
| 23 |
22 13
|
eqeltrd |
|- ( ph -> ( C ( midG ` G ) ( S ` C ) ) e. D ) |
| 24 |
|
df-ne |
|- ( C =/= ( S ` C ) <-> -. C = ( S ` C ) ) |
| 25 |
4
|
adantr |
|- ( ( ph /\ C =/= ( S ` C ) ) -> G e. TarskiG ) |
| 26 |
8
|
adantr |
|- ( ( ph /\ C =/= ( S ` C ) ) -> D e. ran L ) |
| 27 |
14
|
adantr |
|- ( ( ph /\ C =/= ( S ` C ) ) -> C e. P ) |
| 28 |
20
|
adantr |
|- ( ( ph /\ C =/= ( S ` C ) ) -> ( S ` C ) e. P ) |
| 29 |
|
simpr |
|- ( ( ph /\ C =/= ( S ` C ) ) -> C =/= ( S ` C ) ) |
| 30 |
1 3 7 25 27 28 29
|
tgelrnln |
|- ( ( ph /\ C =/= ( S ` C ) ) -> ( C L ( S ` C ) ) e. ran L ) |
| 31 |
13
|
adantr |
|- ( ( ph /\ C =/= ( S ` C ) ) -> B e. D ) |
| 32 |
19
|
adantr |
|- ( ( ph /\ C =/= ( S ` C ) ) -> B e. P ) |
| 33 |
1 2 3 4 5 14 20
|
midbtwn |
|- ( ph -> ( C ( midG ` G ) ( S ` C ) ) e. ( C I ( S ` C ) ) ) |
| 34 |
22 33
|
eqeltrrd |
|- ( ph -> B e. ( C I ( S ` C ) ) ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ C =/= ( S ` C ) ) -> B e. ( C I ( S ` C ) ) ) |
| 36 |
1 3 7 25 27 28 32 29 35
|
btwnlng1 |
|- ( ( ph /\ C =/= ( S ` C ) ) -> B e. ( C L ( S ` C ) ) ) |
| 37 |
31 36
|
elind |
|- ( ( ph /\ C =/= ( S ` C ) ) -> B e. ( D i^i ( C L ( S ` C ) ) ) ) |
| 38 |
12
|
adantr |
|- ( ( ph /\ C =/= ( S ` C ) ) -> A e. D ) |
| 39 |
1 3 7 25 27 28 29
|
tglinerflx1 |
|- ( ( ph /\ C =/= ( S ` C ) ) -> C e. ( C L ( S ` C ) ) ) |
| 40 |
15
|
adantr |
|- ( ( ph /\ C =/= ( S ` C ) ) -> A =/= B ) |
| 41 |
1 2 3 7 18 4 19 10 14
|
mirinv |
|- ( ph -> ( ( S ` C ) = C <-> B = C ) ) |
| 42 |
|
eqcom |
|- ( B = C <-> C = B ) |
| 43 |
41 42
|
bitrdi |
|- ( ph -> ( ( S ` C ) = C <-> C = B ) ) |
| 44 |
43
|
biimpar |
|- ( ( ph /\ C = B ) -> ( S ` C ) = C ) |
| 45 |
44
|
eqcomd |
|- ( ( ph /\ C = B ) -> C = ( S ` C ) ) |
| 46 |
45
|
ex |
|- ( ph -> ( C = B -> C = ( S ` C ) ) ) |
| 47 |
46
|
necon3d |
|- ( ph -> ( C =/= ( S ` C ) -> C =/= B ) ) |
| 48 |
47
|
imp |
|- ( ( ph /\ C =/= ( S ` C ) ) -> C =/= B ) |
| 49 |
11
|
adantr |
|- ( ( ph /\ C =/= ( S ` C ) ) -> <" A B C "> e. ( raG ` G ) ) |
| 50 |
1 2 3 7 25 26 30 37 38 39 40 48 49
|
ragperp |
|- ( ( ph /\ C =/= ( S ` C ) ) -> D ( perpG ` G ) ( C L ( S ` C ) ) ) |
| 51 |
50
|
ex |
|- ( ph -> ( C =/= ( S ` C ) -> D ( perpG ` G ) ( C L ( S ` C ) ) ) ) |
| 52 |
24 51
|
biimtrrid |
|- ( ph -> ( -. C = ( S ` C ) -> D ( perpG ` G ) ( C L ( S ` C ) ) ) ) |
| 53 |
52
|
orrd |
|- ( ph -> ( C = ( S ` C ) \/ D ( perpG ` G ) ( C L ( S ` C ) ) ) ) |
| 54 |
53
|
orcomd |
|- ( ph -> ( D ( perpG ` G ) ( C L ( S ` C ) ) \/ C = ( S ` C ) ) ) |
| 55 |
1 2 3 4 5 6 7 8 14 20
|
islmib |
|- ( ph -> ( ( S ` C ) = ( M ` C ) <-> ( ( C ( midG ` G ) ( S ` C ) ) e. D /\ ( D ( perpG ` G ) ( C L ( S ` C ) ) \/ C = ( S ` C ) ) ) ) ) |
| 56 |
23 54 55
|
mpbir2and |
|- ( ph -> ( S ` C ) = ( M ` C ) ) |
| 57 |
56
|
eqcomd |
|- ( ph -> ( M ` C ) = ( S ` C ) ) |