| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmiopp.p |
|- P = ( Base ` G ) |
| 2 |
|
lmiopp.m |
|- .- = ( dist ` G ) |
| 3 |
|
lmiopp.i |
|- I = ( Itv ` G ) |
| 4 |
|
lmiopp.l |
|- L = ( LineG ` G ) |
| 5 |
|
lmiopp.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
lmiopp.h |
|- ( ph -> G TarskiGDim>= 2 ) |
| 7 |
|
lmiopp.d |
|- ( ph -> D e. ran L ) |
| 8 |
|
lmiopp.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
| 9 |
|
lmiopp.n |
|- M = ( ( lInvG ` G ) ` D ) |
| 10 |
|
lmiopp.a |
|- ( ph -> A e. P ) |
| 11 |
|
lmiopp.1 |
|- ( ph -> -. A e. D ) |
| 12 |
1 2 3 5 6 9 4 7 10
|
lmicl |
|- ( ph -> ( M ` A ) e. P ) |
| 13 |
|
eqidd |
|- ( ph -> ( M ` A ) = ( M ` A ) ) |
| 14 |
1 2 3 5 6 9 4 7 10 12
|
islmib |
|- ( ph -> ( ( M ` A ) = ( M ` A ) <-> ( ( A ( midG ` G ) ( M ` A ) ) e. D /\ ( D ( perpG ` G ) ( A L ( M ` A ) ) \/ A = ( M ` A ) ) ) ) ) |
| 15 |
13 14
|
mpbid |
|- ( ph -> ( ( A ( midG ` G ) ( M ` A ) ) e. D /\ ( D ( perpG ` G ) ( A L ( M ` A ) ) \/ A = ( M ` A ) ) ) ) |
| 16 |
15
|
simpld |
|- ( ph -> ( A ( midG ` G ) ( M ` A ) ) e. D ) |
| 17 |
1 2 3 5 6 9 4 7 10
|
lmilmi |
|- ( ph -> ( M ` ( M ` A ) ) = A ) |
| 18 |
17
|
eqeq1d |
|- ( ph -> ( ( M ` ( M ` A ) ) = ( M ` A ) <-> A = ( M ` A ) ) ) |
| 19 |
1 2 3 5 6 9 4 7 12
|
lmiinv |
|- ( ph -> ( ( M ` ( M ` A ) ) = ( M ` A ) <-> ( M ` A ) e. D ) ) |
| 20 |
|
eqcom |
|- ( A = ( M ` A ) <-> ( M ` A ) = A ) |
| 21 |
20
|
a1i |
|- ( ph -> ( A = ( M ` A ) <-> ( M ` A ) = A ) ) |
| 22 |
18 19 21
|
3bitr3d |
|- ( ph -> ( ( M ` A ) e. D <-> ( M ` A ) = A ) ) |
| 23 |
1 2 3 5 6 9 4 7 10
|
lmiinv |
|- ( ph -> ( ( M ` A ) = A <-> A e. D ) ) |
| 24 |
22 23
|
bitrd |
|- ( ph -> ( ( M ` A ) e. D <-> A e. D ) ) |
| 25 |
11 24
|
mtbird |
|- ( ph -> -. ( M ` A ) e. D ) |
| 26 |
1 2 3 5 6 10 12
|
midbtwn |
|- ( ph -> ( A ( midG ` G ) ( M ` A ) ) e. ( A I ( M ` A ) ) ) |
| 27 |
1 2 3 8 10 12 16 11 25 26
|
islnoppd |
|- ( ph -> A O ( M ` A ) ) |