| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmle.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
lmle.3 |
|- J = ( MetOpen ` D ) |
| 3 |
|
lmle.4 |
|- ( ph -> D e. ( *Met ` X ) ) |
| 4 |
|
lmle.6 |
|- ( ph -> M e. ZZ ) |
| 5 |
|
lmle.7 |
|- ( ph -> F ( ~~>t ` J ) P ) |
| 6 |
|
lmle.8 |
|- ( ph -> Q e. X ) |
| 7 |
|
lmle.9 |
|- ( ph -> R e. RR* ) |
| 8 |
|
lmle.10 |
|- ( ( ph /\ k e. Z ) -> ( Q D ( F ` k ) ) <_ R ) |
| 9 |
2
|
mopntopon |
|- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 10 |
3 9
|
syl |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 11 |
|
lmrel |
|- Rel ( ~~>t ` J ) |
| 12 |
|
releldm |
|- ( ( Rel ( ~~>t ` J ) /\ F ( ~~>t ` J ) P ) -> F e. dom ( ~~>t ` J ) ) |
| 13 |
11 5 12
|
sylancr |
|- ( ph -> F e. dom ( ~~>t ` J ) ) |
| 14 |
1 10 4 13
|
lmff |
|- ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) |
| 15 |
|
eqid |
|- ( ZZ>= ` j ) = ( ZZ>= ` j ) |
| 16 |
10
|
adantr |
|- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> J e. ( TopOn ` X ) ) |
| 17 |
|
simprl |
|- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> j e. Z ) |
| 18 |
17 1
|
eleqtrdi |
|- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> j e. ( ZZ>= ` M ) ) |
| 19 |
|
eluzelz |
|- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
| 20 |
18 19
|
syl |
|- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> j e. ZZ ) |
| 21 |
5
|
adantr |
|- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> F ( ~~>t ` J ) P ) |
| 22 |
|
oveq2 |
|- ( x = ( F ` k ) -> ( Q D x ) = ( Q D ( F ` k ) ) ) |
| 23 |
22
|
breq1d |
|- ( x = ( F ` k ) -> ( ( Q D x ) <_ R <-> ( Q D ( F ` k ) ) <_ R ) ) |
| 24 |
|
fvres |
|- ( k e. ( ZZ>= ` j ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) = ( F ` k ) ) |
| 25 |
24
|
adantl |
|- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) = ( F ` k ) ) |
| 26 |
|
simprr |
|- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) |
| 27 |
26
|
ffvelcdmda |
|- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) e. X ) |
| 28 |
25 27
|
eqeltrrd |
|- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. X ) |
| 29 |
1
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 30 |
17 29
|
sylan |
|- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 31 |
8
|
adantlr |
|- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. Z ) -> ( Q D ( F ` k ) ) <_ R ) |
| 32 |
30 31
|
syldan |
|- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( Q D ( F ` k ) ) <_ R ) |
| 33 |
23 28 32
|
elrabd |
|- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. { x e. X | ( Q D x ) <_ R } ) |
| 34 |
|
eqid |
|- { x e. X | ( Q D x ) <_ R } = { x e. X | ( Q D x ) <_ R } |
| 35 |
2 34
|
blcld |
|- ( ( D e. ( *Met ` X ) /\ Q e. X /\ R e. RR* ) -> { x e. X | ( Q D x ) <_ R } e. ( Clsd ` J ) ) |
| 36 |
3 6 7 35
|
syl3anc |
|- ( ph -> { x e. X | ( Q D x ) <_ R } e. ( Clsd ` J ) ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> { x e. X | ( Q D x ) <_ R } e. ( Clsd ` J ) ) |
| 38 |
15 16 20 21 33 37
|
lmcld |
|- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> P e. { x e. X | ( Q D x ) <_ R } ) |
| 39 |
14 38
|
rexlimddv |
|- ( ph -> P e. { x e. X | ( Q D x ) <_ R } ) |
| 40 |
|
oveq2 |
|- ( x = P -> ( Q D x ) = ( Q D P ) ) |
| 41 |
40
|
breq1d |
|- ( x = P -> ( ( Q D x ) <_ R <-> ( Q D P ) <_ R ) ) |
| 42 |
41
|
elrab |
|- ( P e. { x e. X | ( Q D x ) <_ R } <-> ( P e. X /\ ( Q D P ) <_ R ) ) |
| 43 |
42
|
simprbi |
|- ( P e. { x e. X | ( Q D x ) <_ R } -> ( Q D P ) <_ R ) |
| 44 |
39 43
|
syl |
|- ( ph -> ( Q D P ) <_ R ) |