Step |
Hyp |
Ref |
Expression |
1 |
|
lmmbr.2 |
|- J = ( MetOpen ` D ) |
2 |
|
lmmbr.3 |
|- ( ph -> D e. ( *Met ` X ) ) |
3 |
|
lmmbr3.5 |
|- Z = ( ZZ>= ` M ) |
4 |
|
lmmbr3.6 |
|- ( ph -> M e. ZZ ) |
5 |
1 2
|
lmmbr2 |
|- ( ph -> ( F ( ~~>t ` J ) P <-> ( F e. ( X ^pm CC ) /\ P e. X /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) ) |
6 |
3
|
rexuz3 |
|- ( M e. ZZ -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
7 |
4 6
|
syl |
|- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
8 |
7
|
ralbidv |
|- ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) <-> A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
9 |
8
|
3anbi3d |
|- ( ph -> ( ( F e. ( X ^pm CC ) /\ P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) <-> ( F e. ( X ^pm CC ) /\ P e. X /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) ) |
10 |
5 9
|
bitr4d |
|- ( ph -> ( F ( ~~>t ` J ) P <-> ( F e. ( X ^pm CC ) /\ P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) ) |