Step |
Hyp |
Ref |
Expression |
1 |
|
lmnn.2 |
|- J = ( MetOpen ` D ) |
2 |
|
lmnn.3 |
|- ( ph -> D e. ( *Met ` X ) ) |
3 |
|
lmnn.4 |
|- ( ph -> P e. X ) |
4 |
|
lmnn.5 |
|- ( ph -> F : NN --> X ) |
5 |
|
lmnn.6 |
|- ( ( ph /\ k e. NN ) -> ( ( F ` k ) D P ) < ( 1 / k ) ) |
6 |
|
rpreccl |
|- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
7 |
6
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
8 |
7
|
rpred |
|- ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. RR ) |
9 |
7
|
rpge0d |
|- ( ( ph /\ x e. RR+ ) -> 0 <_ ( 1 / x ) ) |
10 |
|
flge0nn0 |
|- ( ( ( 1 / x ) e. RR /\ 0 <_ ( 1 / x ) ) -> ( |_ ` ( 1 / x ) ) e. NN0 ) |
11 |
8 9 10
|
syl2anc |
|- ( ( ph /\ x e. RR+ ) -> ( |_ ` ( 1 / x ) ) e. NN0 ) |
12 |
|
nn0p1nn |
|- ( ( |_ ` ( 1 / x ) ) e. NN0 -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN ) |
13 |
11 12
|
syl |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN ) |
14 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> D e. ( *Met ` X ) ) |
15 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> F : NN --> X ) |
16 |
|
eluznn |
|- ( ( ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. NN ) |
17 |
13 16
|
sylan |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. NN ) |
18 |
15 17
|
ffvelrnd |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( F ` k ) e. X ) |
19 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> P e. X ) |
20 |
|
xmetcl |
|- ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X /\ P e. X ) -> ( ( F ` k ) D P ) e. RR* ) |
21 |
14 18 19 20
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) e. RR* ) |
22 |
17
|
nnrecred |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) e. RR ) |
23 |
22
|
rexrd |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) e. RR* ) |
24 |
|
rpxr |
|- ( x e. RR+ -> x e. RR* ) |
25 |
24
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> x e. RR* ) |
26 |
5
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. NN ) -> ( ( F ` k ) D P ) < ( 1 / k ) ) |
27 |
17 26
|
syldan |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) < ( 1 / k ) ) |
28 |
8
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) e. RR ) |
29 |
13
|
nnred |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. RR ) |
30 |
29
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. RR ) |
31 |
17
|
nnred |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. RR ) |
32 |
|
flltp1 |
|- ( ( 1 / x ) e. RR -> ( 1 / x ) < ( ( |_ ` ( 1 / x ) ) + 1 ) ) |
33 |
28 32
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) < ( ( |_ ` ( 1 / x ) ) + 1 ) ) |
34 |
|
eluzle |
|- ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) <_ k ) |
35 |
34
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) <_ k ) |
36 |
28 30 31 33 35
|
ltletrd |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) < k ) |
37 |
|
simplr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> x e. RR+ ) |
38 |
|
rpregt0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
39 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
40 |
39
|
rpregt0d |
|- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
41 |
|
ltrec1 |
|- ( ( ( x e. RR /\ 0 < x ) /\ ( k e. RR /\ 0 < k ) ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) ) |
42 |
38 40 41
|
syl2an |
|- ( ( x e. RR+ /\ k e. NN ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) ) |
43 |
37 17 42
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) ) |
44 |
36 43
|
mpbid |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) < x ) |
45 |
21 23 25 27 44
|
xrlttrd |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) < x ) |
46 |
45
|
ralrimiva |
|- ( ( ph /\ x e. RR+ ) -> A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x ) |
47 |
|
fveq2 |
|- ( j = ( ( |_ ` ( 1 / x ) ) + 1 ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) |
48 |
47
|
raleqdv |
|- ( j = ( ( |_ ` ( 1 / x ) ) + 1 ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x <-> A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x ) ) |
49 |
48
|
rspcev |
|- ( ( ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN /\ A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) |
50 |
13 46 49
|
syl2anc |
|- ( ( ph /\ x e. RR+ ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) |
51 |
50
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) |
52 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
53 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
54 |
|
eqidd |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
55 |
1 2 52 53 54 4
|
lmmbrf |
|- ( ph -> ( F ( ~~>t ` J ) P <-> ( P e. X /\ A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) ) ) |
56 |
3 51 55
|
mpbir2and |
|- ( ph -> F ( ~~>t ` J ) P ) |