| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lmnn.2 | 
							 |-  J = ( MetOpen ` D )  | 
						
						
							| 2 | 
							
								
							 | 
							lmnn.3 | 
							 |-  ( ph -> D e. ( *Met ` X ) )  | 
						
						
							| 3 | 
							
								
							 | 
							lmnn.4 | 
							 |-  ( ph -> P e. X )  | 
						
						
							| 4 | 
							
								
							 | 
							lmnn.5 | 
							 |-  ( ph -> F : NN --> X )  | 
						
						
							| 5 | 
							
								
							 | 
							lmnn.6 | 
							 |-  ( ( ph /\ k e. NN ) -> ( ( F ` k ) D P ) < ( 1 / k ) )  | 
						
						
							| 6 | 
							
								
							 | 
							rpreccl | 
							 |-  ( x e. RR+ -> ( 1 / x ) e. RR+ )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. RR+ )  | 
						
						
							| 8 | 
							
								7
							 | 
							rpred | 
							 |-  ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. RR )  | 
						
						
							| 9 | 
							
								7
							 | 
							rpge0d | 
							 |-  ( ( ph /\ x e. RR+ ) -> 0 <_ ( 1 / x ) )  | 
						
						
							| 10 | 
							
								
							 | 
							flge0nn0 | 
							 |-  ( ( ( 1 / x ) e. RR /\ 0 <_ ( 1 / x ) ) -> ( |_ ` ( 1 / x ) ) e. NN0 )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							syl2anc | 
							 |-  ( ( ph /\ x e. RR+ ) -> ( |_ ` ( 1 / x ) ) e. NN0 )  | 
						
						
							| 12 | 
							
								
							 | 
							nn0p1nn | 
							 |-  ( ( |_ ` ( 1 / x ) ) e. NN0 -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							 |-  ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN )  | 
						
						
							| 14 | 
							
								2
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> D e. ( *Met ` X ) )  | 
						
						
							| 15 | 
							
								4
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> F : NN --> X )  | 
						
						
							| 16 | 
							
								
							 | 
							eluznn | 
							 |-  ( ( ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. NN )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							sylan | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. NN )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( F ` k ) e. X )  | 
						
						
							| 19 | 
							
								3
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> P e. X )  | 
						
						
							| 20 | 
							
								
							 | 
							xmetcl | 
							 |-  ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X /\ P e. X ) -> ( ( F ` k ) D P ) e. RR* )  | 
						
						
							| 21 | 
							
								14 18 19 20
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) e. RR* )  | 
						
						
							| 22 | 
							
								17
							 | 
							nnrecred | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) e. RR )  | 
						
						
							| 23 | 
							
								22
							 | 
							rexrd | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) e. RR* )  | 
						
						
							| 24 | 
							
								
							 | 
							rpxr | 
							 |-  ( x e. RR+ -> x e. RR* )  | 
						
						
							| 25 | 
							
								24
							 | 
							ad2antlr | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> x e. RR* )  | 
						
						
							| 26 | 
							
								5
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. NN ) -> ( ( F ` k ) D P ) < ( 1 / k ) )  | 
						
						
							| 27 | 
							
								17 26
							 | 
							syldan | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) < ( 1 / k ) )  | 
						
						
							| 28 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) e. RR )  | 
						
						
							| 29 | 
							
								13
							 | 
							nnred | 
							 |-  ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. RR )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. RR )  | 
						
						
							| 31 | 
							
								17
							 | 
							nnred | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. RR )  | 
						
						
							| 32 | 
							
								
							 | 
							flltp1 | 
							 |-  ( ( 1 / x ) e. RR -> ( 1 / x ) < ( ( |_ ` ( 1 / x ) ) + 1 ) )  | 
						
						
							| 33 | 
							
								28 32
							 | 
							syl | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) < ( ( |_ ` ( 1 / x ) ) + 1 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							eluzle | 
							 |-  ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) <_ k )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) <_ k )  | 
						
						
							| 36 | 
							
								28 30 31 33 35
							 | 
							ltletrd | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) < k )  | 
						
						
							| 37 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> x e. RR+ )  | 
						
						
							| 38 | 
							
								
							 | 
							rpregt0 | 
							 |-  ( x e. RR+ -> ( x e. RR /\ 0 < x ) )  | 
						
						
							| 39 | 
							
								
							 | 
							nnrp | 
							 |-  ( k e. NN -> k e. RR+ )  | 
						
						
							| 40 | 
							
								39
							 | 
							rpregt0d | 
							 |-  ( k e. NN -> ( k e. RR /\ 0 < k ) )  | 
						
						
							| 41 | 
							
								
							 | 
							ltrec1 | 
							 |-  ( ( ( x e. RR /\ 0 < x ) /\ ( k e. RR /\ 0 < k ) ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) )  | 
						
						
							| 42 | 
							
								38 40 41
							 | 
							syl2an | 
							 |-  ( ( x e. RR+ /\ k e. NN ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) )  | 
						
						
							| 43 | 
							
								37 17 42
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) )  | 
						
						
							| 44 | 
							
								36 43
							 | 
							mpbid | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) < x )  | 
						
						
							| 45 | 
							
								21 23 25 27 44
							 | 
							xrlttrd | 
							 |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) < x )  | 
						
						
							| 46 | 
							
								45
							 | 
							ralrimiva | 
							 |-  ( ( ph /\ x e. RR+ ) -> A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x )  | 
						
						
							| 47 | 
							
								
							 | 
							fveq2 | 
							 |-  ( j = ( ( |_ ` ( 1 / x ) ) + 1 ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							raleqdv | 
							 |-  ( j = ( ( |_ ` ( 1 / x ) ) + 1 ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x <-> A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							rspcev | 
							 |-  ( ( ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN /\ A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x )  | 
						
						
							| 50 | 
							
								13 46 49
							 | 
							syl2anc | 
							 |-  ( ( ph /\ x e. RR+ ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x )  | 
						
						
							| 51 | 
							
								50
							 | 
							ralrimiva | 
							 |-  ( ph -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x )  | 
						
						
							| 52 | 
							
								
							 | 
							nnuz | 
							 |-  NN = ( ZZ>= ` 1 )  | 
						
						
							| 53 | 
							
								
							 | 
							1zzd | 
							 |-  ( ph -> 1 e. ZZ )  | 
						
						
							| 54 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ k e. NN ) -> ( F ` k ) = ( F ` k ) )  | 
						
						
							| 55 | 
							
								1 2 52 53 54 4
							 | 
							lmmbrf | 
							 |-  ( ph -> ( F ( ~~>t ` J ) P <-> ( P e. X /\ A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) ) )  | 
						
						
							| 56 | 
							
								3 51 55
							 | 
							mpbir2and | 
							 |-  ( ph -> F ( ~~>t ` J ) P )  |