Description: A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmodabl | |- ( W e. LMod -> W e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | |- ( W e. LMod -> ( Base ` W ) = ( Base ` W ) ) |
|
| 2 | eqidd | |- ( W e. LMod -> ( +g ` W ) = ( +g ` W ) ) |
|
| 3 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 4 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 5 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 6 | 4 5 | lmodcom | |- ( ( W e. LMod /\ x e. ( Base ` W ) /\ y e. ( Base ` W ) ) -> ( x ( +g ` W ) y ) = ( y ( +g ` W ) x ) ) |
| 7 | 1 2 3 6 | isabld | |- ( W e. LMod -> W e. Abel ) |