Metamath Proof Explorer


Theorem lmodabl

Description: A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 25-Jun-2014)

Ref Expression
Assertion lmodabl
|- ( W e. LMod -> W e. Abel )

Proof

Step Hyp Ref Expression
1 eqidd
 |-  ( W e. LMod -> ( Base ` W ) = ( Base ` W ) )
2 eqidd
 |-  ( W e. LMod -> ( +g ` W ) = ( +g ` W ) )
3 lmodgrp
 |-  ( W e. LMod -> W e. Grp )
4 eqid
 |-  ( Base ` W ) = ( Base ` W )
5 eqid
 |-  ( +g ` W ) = ( +g ` W )
6 4 5 lmodcom
 |-  ( ( W e. LMod /\ x e. ( Base ` W ) /\ y e. ( Base ` W ) ) -> ( x ( +g ` W ) y ) = ( y ( +g ` W ) x ) )
7 1 2 3 6 isabld
 |-  ( W e. LMod -> W e. Abel )