Metamath Proof Explorer


Theorem lmodass

Description: Left module vector sum is associative. (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvacl.v
|- V = ( Base ` W )
lmodvacl.a
|- .+ = ( +g ` W )
Assertion lmodass
|- ( ( W e. LMod /\ ( X e. V /\ Y e. V /\ Z e. V ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )

Proof

Step Hyp Ref Expression
1 lmodvacl.v
 |-  V = ( Base ` W )
2 lmodvacl.a
 |-  .+ = ( +g ` W )
3 lmodgrp
 |-  ( W e. LMod -> W e. Grp )
4 1 2 grpass
 |-  ( ( W e. Grp /\ ( X e. V /\ Y e. V /\ Z e. V ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )
5 3 4 sylan
 |-  ( ( W e. LMod /\ ( X e. V /\ Y e. V /\ Z e. V ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )